
On the commutative equivalence of context-free
languages

Arturo Carpi1 and Flavio D’Alessandro2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
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1 Introduction

In this paper, we study the commutative equivalence of context-free and regular
languages. Two words are said to be commutatively equivalent if one is obtained
from the other by a permutation of the letters of the word. Two languages
L1 and L2 are said to be commutatively equivalent if there exists a bijection
f : L1 → L2 such that every word u ∈ L1 is commutatively equivalent to f(u).
This notion plays a role in the study of several problems of Theoretical Computer
Science such as, for instance, in the Theory of Codes, where it is involved in the
celebrated Schützenberger conjecture about the commutative equivalence of a
maximal finite code with a prefix one (see e.g, [3, 12]). The question of our
interest can be formulated as follows:

Commutative Equivalence Problem. Given a context-free language L1, does
there exist a regular language L2 which is commutatively equivalent to L1?

In the sequel, for short, we refer to it as CE Problem. A language which is
commutatively equivalent to a regular one will be called commutatively regular.
For our discussion, the following notions are useful. Given a language L, the
growth function gL returns, for any non-negative integer n, the number of the
words in L whose length is less than or equal to n. A language L is called sparse
if its growth function is polynomially upper bounded. A language L is said to be
of exponential growth if there exists a real number k > 1 such that gL(n) > kn

for all sufficiently large n. Two results are relevant in this context. The first
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proved in [5, 19] states that every context-free language is either sparse or of
exponential growth. The second, proved in [16, 20], states that the class of sparse
context-free languages coincides with that of bounded languages. We recall that
a language L is termed bounded if there exist k non-empty words u1, . . . , uk such
that L ⊆ u∗1 · · ·u∗k. Bounded context-free languages play a meaningful role in
Computer Science and in Mathematics and have been widely investigated in the
past where remarkable theorems characterize the structure of these languages
[7, 8, 14–18, 20, 21]. In [9–11] it has been given the solution (in the affirmative)
of the CE Problem for sparse languages: Every bounded context-free language L1

is commutatively equivalent to a regular language L2. Moreover the language L2

can be effectively constructed starting from an effective presentation of L1. It is
also shown that the CE Problem can be solved in the affermative for the wider
class of bounded semi-linear languages.

In view of the latter theorem and of the results mentioned above, the CE
Problem remains open for the class of context-free languages of exponential
growth. It should be pointed out that the techniques forged to solve the CE
Problem in the bounded case cannot be used in the exponential one. This is due
to the fact that such techniques are based upon the faithful representation of
bounded context-free languages by means of semi-linear sets of vectors (over N),
a result due to Ginsburg and Spanier ([14, 15]) that does not hold in the general
case.

A remark is relevant in this context: given a commutatively regular language
L, its characteristic series in commutative variables – that is, the formal series L
such that the coefficient of every word w is the number of words of L commuta-
tively equivalent to w – is rational. This fact implies two consequences. The first
is that the answer to the CE Problem is not affirmative in general. Indeed, the
generating series of a commutatively regular language must be rational, while,
on the other hand, there exist context-free languages whose generating series are
algebraic not rational and, even, transcendental, as proven by Flajolet in [13].
Dyck and semi-Dyck languages are the first example of such languages. The sec-
ond consequence is that the study of the CE Problem can be reduced to the
family of languages whose characteristic series are rational. In this context, the
class of non-expansive grammars seems to play a relevant role. A context-free
grammar G is said to be expansive if one has X ⇒∗ α1Xα2Xα3 for some non-
terminal X and α1, α2, α3 ∈ V ∗, V being the set of non-terminals of G. In the
opposite case, G is non-expansive.

A remarkable result by Baron and Kuich [2] provides a characterization
of non-expansive grammars. In particular, an unambiguous grammar is non-
expansive if and only if all non-terminals generate languages whose characteristic
series are rational.

In the first part of this paper, we investigate the CE Problem for languages
generated by non-expansive grammars. The first result we prove can be formu-
lated as follows (Theorem 8): the language generated by every unambiguous and
non-expansive grammar G is commutatively regular, provided that there exist a
code W of words and a bijection f : P → W, between the set of productions P
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of G and W such that, for every production p ∈ P , the word obtained deleting
all non-terminals in the right side of p is commutatively equivalent to f(p). This
condition is verified, in particular, if the number of terminals occurring in the
right side of each production is sufficiently large (with respect to the number of
productions) and they are not all equal to the same letter (see Theorem 6).

Two ingredients play a role in the proof of Theorem 8: codes and a special
structuring of the derivations of the grammar. Such structuring is based upon
two objects: minimal non-terminals and leftmost minimal derivations. A non-
terminal is called minimal if it is minimal with respect to the quasi-order ≤
defined on the set of non-terminals as follows: if X,Y are non-terminals, one
has X ≤ Y if there is a derivation X ⇒∗ α1Y α2. A derivation of G is called
leftmost minimal if, at each step of the derivation, the production is applied to
the leftmost occurrence of a minimal non-terminal of the sentential form. One of
the key-feature of such structuring is that, in every leftmost minimal derivation
of a non-expansive grammar, the number of occurrences of non-terminals in any
of its sentential forms is bounded by an integer depending only on the grammar.
This fact together with the use of codes allows us to develop a technique to deal
with the problem.

The use of these objects also allows to get an alternative proof of the ‘if’ part
of the theorem of Baron and Kuich. In our opinion, this proof could be of interest
in itself since it furnishes a method for the construction, starting from a non-
expansive grammar, of a generalized automaton whose behaviour coincides with
the characteristic series of the language generated by the grammar. Thus the
CE Problem for unambiguous non-expansive grammars is reduced to the more
general problem of finding a regular language with a prescribed characteristic
series in commutative variables.

In the second part of the paper, we investigate the CE Problem with respect
to the first non-trivial family of non-expansive grammars: the minimal linear
grammars. A linear grammar is called minimal if it has only one non-terminal
symbol. This notion, first introduced in [6] is relevant in our study since, in
the unambiguous case, the derivation process of words in such a grammar, is
algebraically similar to that of words in a monoid generated by a code. We first
prove that the language generated by an unambiguous minimal linear grammar
G is commutatively regular, if the language of words generated by G in k steps,
for some given k ≥ 1, is a commutatively prefix set (Theorem 9 and Corollary
10). This result shows a connection between the CE Problem for unambiguous
minimal linear grammars and the study of conditions that guarantee for a finite
set of words to be commutatively equivalent to a code.

In view of this problem, it becomes natural to study the property of unambi-
guity of these grammars. By using the notion of Bernoulli distribution, we prove
two results for an unambiguous minimal linear grammar which are analogous to
fundamental properties of codes. The first is a “Kraft-McMillan like” inequality:
in an arbitrary unambiguous minimal linear grammar, the set of words uv where
X → uXv is a production of G, has measure not larger than 1, with respect to
every Bernoulli distribution (Proposition 11). The second result states, up to a
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technical restriction, the very same characterization of codes in term of positive
Bernoulli distributions (Proposition 12 and Corollary 13). We finally refine our
results for minimal linear grammars on a binary alphabet of terminal symbols,
showing a relation with the Schützenberger conjecture of codes mentioned above.

2 Preliminaries

We now recall some useful terms and basic properties (see [3, 15]).

Words and languages. Let A be a finite non-empty alphabet and A∗ be the
free monoid generated by A. If n ∈ N, then A≤n denotes the set of all the words
of A∗ of length not larger than n. For every a ∈ A, |w|a denotes the number of
occurrences of the letter a in w. More generally, for every subset B of A, we set
|w|B =

∑
b∈B |w|b and alphB(w) = {b ∈ B | |w|b > 0}. If A = {a1, . . . , at} is

an ordered alphabet of t letters, and if w ∈ A∗ is an arbitrary word, then the
Parikh vector of w is the tuple ψ(w) of Nt defined as ψ(w) = (|w|a1 , . . . , |w|at).
The function ψ : A∗ → Nt, mapping w into the Parikh vector of w, is an epi-
morphism of the free monoid A∗ onto the free commutative additive monoid Nt,
called the Parikh morphism (over A). One can introduce in A∗ the equivalence
relation ∼, called commutative equivalence, defined as follows: for all u, v ∈
A∗ u ∼ v if ψ(u) = ψ(v). Thus one has u ∼ v if the word v is obtained
rearranging the letters of u in a different order. Two languages L and L′ are said
to be commutatively equivalent, and one writes L ∼ L′, if there exists a bijection
f : L → L′ such that, for every u ∈ L, u ∼ f(u). A set X over the alphabet
A is said to be a prefix set if XA+ ∩ X = ∅, that is, if, for every u, v ∈ X , u
is not a proper prefix of v. A set X of words over an alphabet A is said to be
commutatively prefix if there exists a prefix set X ′ such that X is commutively
equivalent to X ′. A subset X of A+ is a code (over A) if every word of X+ has
a unique factorization as a product of words of X .

Let B and A be alphabets with B ⊆ A. The projection of A∗ onto B∗ is the
epi-morphism π̂B : A∗ → B∗ generated by the function πB : A → B ∪ {ε} such
that, for every a ∈ A, πB(a) = a, if a ∈ B, and πB(a) = ε, otherwise. In the
sequel, the morphism π̂B will be simply denoted πB .

Formal series and generalized automata. Let A be an alphabet and N̂
be the semiring N̂ = N ∪ {+∞}. The semiring of formal power series in non-

commutative and commutative variables with coefficients in N̂ and variables in
A will be denoted, respectively, by N̂〈〈A〉〉 and N̂[[A]]. A formal power series

with coefficients in N̂ is said to be unambiguous (resp., non-singular) if all its
coefficients belong to the set {0, 1} (resp., to N). As usually, the semiring of
non-singular series in non-commutative and commutative variables will be de-
noted, respectively, by N〈〈A〉〉 and N[[A]]. The coefficient of a monomial w in
the series s is denoted by (s, w). With any language L on an alphabet A, we
associate the characteristic series in non-commutative variables L =

∑
w∈L w.

The natural projection of L in the commutative semiring N̂[[A]] will be called
the characteristic series in commutative variables of L and will be denoted by
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L. Thus, for any monomial an1
1 · · · a

nt
t , (L, an1

1 · · · a
nt
t ) gives the number of the

words of L whose Parikh vector is (n1, . . . , nt), n1, . . . , nt ∈ N. Let M be a
monoid. A generalized automaton A over M is given by a finite digraph (Q,E)
whose arrows are labelled by elements of M together with two subsets I and F
of Q. The elements of Q, I and F are called respectively, states, initial states,
and final states of the automaton and the elements of E are called transitions.
Any path in the graph (Q,E) starting in an initial state and ending in a terminal
state is said to be successful. The label of such a path is the product (computed
in M) of the labels of its arrows. The behaviour of the automaton is the formal
sum

∑
m∈M kmm, where, for all m ∈ M , km is the number (possibly infinite)

of successful paths of A with label m. If M is the free monoid (resp., the free
commutative monoid) generated by an alphabet T , then the behaviour of A is
a formal power series in non-commutative (resp., commutative) variables with

coefficients in N̂ and variables in T . If, moreover, in the automaton A there is no
cycle with label ε, then the behaviour of A is a non-singular series.

As is well known, a formal power series (in non-commutative or commutative
variables) is the behaviour of a generalized automaton if and only if it is rational,

that is, it belongs to the minimal subsemiring of N̂〈〈T 〉〉 (resp., N̂[[T ]]) containing
all monomials and closed for the ∗-operation.

Context-free grammars. Let G = 〈V, T, P, S〉 be a context-free grammar
where V denotes the vocabulary of G, N = V \ T denotes the set of non-
terminals of G, T denotes the set of terminals, P denotes the set of productions
of G, and S ∈ V denotes the axiom of G. For every α, β ∈ V ∗, we write α⇒G β
if α directly derives β in G, and we denote by⇒∗G the derivation relation of G. If
no ambiguity arises⇒G (resp.,⇒∗G) is simply denoted⇒ (resp.,⇒∗). We denote
by L(G) the language {u ∈ T ∗ | S ⇒∗G u} of all the words of T ∗ generated by
G. A grammar G is said to be unambiguous if every u ∈ L(G) is generated by
exactly one leftmost derivation; otherwise G is said to be ambiguous.

Now we introduce the concept of leftmost minimal derivation. Let G =
〈V, T, P, S〉 be a context-free grammar. One may consider the relation ≤ on
the set N of non-terminal symbols of G defined as follows: for any X,Y ∈ N ,
one has X ≤ Y if there is a derivation X ⇒∗ α1Y α2 in G with α1, α2 ∈ V ∗. As
one easily verifies, the relation ≤ is a quasi-order on N . As usually, if X,Y are
non-terminals such that X ≤ Y and Y ≤ X, then we shall write X ≡ Y , while
if one has X ≤ Y but Y ≤ X does not hold true, then we shall write X < Y .
The relations < and ≡ are respectively a partial order and an equivalence on the
set N of non-terminals. We say that a non-terminal X occurring in a sentential
form α is minimal if there does not exist a non-terminal Y ∈ alphN (α) such
that Y < X. Analogously to leftmost or rightmost derivations, we may consider
derivations in G where the replaced non-terminal is the leftmost minimal non-
terminal occurring in a sentential form. More formally, let α, β ∈ V ∗ be such
that α⇒ β. Then there are α1, α2, γ ∈ V ∗, A ∈ N such that

α = α1Aα2, β = α1γα2, A→ γ in P. (1)
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If A is a minimal non-terminal of α and all non-terminals occurring in α1 are
not minimal non-terminal of α, then we say that α ⇒ β is a leftmost minimal
generation. In such a case, we write α =⇒

M,p
β , where p is the production A→ γ.

Sometimes, for simplicity, the subscript p will be omitted. The reflexive and
transitive closure of the relation =⇒

M
will be denoted by

∗
=⇒
M

. If α ∈ V ∗, then
any sequence

S = β0 =⇒
M,p1

β1 =⇒
M,p2

· · ·βn−1 =⇒
M,pn

α (2)

with β1, . . . , βn−1 ∈ V ∗, p1, . . . , pn ∈ P will be called a leftmost minimal deriva-
tion of α. In the sequel, if no ambiguity arises, the generation (2) will be simply
denoted S ⇒r α, where r = p1 · · · pn.

As a straightforward adaptation of a classical result, one can prove that
there exists a one-to-one correspondence between leftmost minimal derivations
of a word w ∈ L(G) and parse trees of such a word.

3 Non-expansive grammars and rational series

In the sequel, we consider a context-free grammar G = 〈V, T, P, S〉. As already
observed, the characteristic series (in commutative variables) and the generating
series of a commutatively regular language must be rational. Rational series are
well-known and investigated structures. In this context, as a related result, it’s
worth to mention a remarkable contribution by Beal and Perrin that provides a
characterization of the series that are generating series of regular languages on
alphabets of prescribed size [1]. A result of Baron and Kuich [2] provides the
characterization of context-free grammars whose characteristic series are ratio-
nal. This characterization is based upon the notion of non-expansive grammar.
A grammar G is said to be expansive if there is a non-terminal X such that
X ⇒∗ α1Xα2Xα3 for some α1, α2, α3 ∈ V ∗. In the opposite case, G is said
non-expansive.

With any non-terminal X of the grammar G one can associate the series GX

of N̂〈〈T 〉〉, whose coefficients
(
GX , w

)
count the leftmost derivations X ⇒∗ w.

The natural projection of GX in the commutative semiring N̂[[T ]] will be denoted
by G

X
. Thus the coefficients

(
G

X
, w
)

count the leftmost derivations of words
commutatively equivalent to w. The series G = G

S
is called the characteristic

series (in commutative variables) of the grammar G. In particular, if G is un-
ambiguous, then G is the characteristic series of the language generated by G.
We say that a context-free grammar G is cycle-free if there is no non-terminal X
such that X ⇒+ X. This condition ensures that any word w ∈ L(G) has finitely
many leftmost derivations. The following theorem characterizes non-expansive
grammars.

Theorem 1. [2] A cycle-free reduced context-free grammar is non-expansive if
and only if for all non-terminal X, the series G

X
is rational.

The following is a straightforward consequence of the theorem above
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Corollary 2. The characteristic series in commutative variables of the language
generated by an unambiguous non-expansive grammar is rational.

Clearly, the characteristic series in commutative variables of a commutatively
regular language L is rational. For this reason, in view of Theorem 1, the study
of the CE Problem for languages generated by non-expansive grammars is of
particular interest.

Indeed, if a language L is generated by an unambiguous non-expansive gram-
mar, then its characteristic series L is the behaviour of a (generalized) N-
automaton A on the free commutative monoid. Thus, in order to investigate
the commutative regularity of the language L, one is reduced to ask whether the
behaviour of A is the characteristic series in commutative variables of a regular
language. In other terms, one is reduced to search for an unambiguous automa-
ton (on the monoid T ∗) whose behaviour, projected into the semiring of series
in commutative variables, is equal to that of A.

Now we will show how to explicitly construct a generalized automaton whose
behaviour is the characteristic series of a given non-expansive grammar. Such a
construction will furnish also an alternative proof of the ‘if’ part of Theorem 1.

Let G be a grammar. Recall that ≤ and⇒∗M are, respectively, the quasi-order
on N and the leftmost minimal derivation relation of G introduced in Section 2.

The following lemma shows that in a leftmost minimal derivation of a non-
expansive grammar the number of non-terminals occurring in the sentential
forms is limited.

Lemma 3. Let G = 〈V, T, P, S〉 be a non-expansive context-free grammar. There
exists an integer kG > 0 such that if S ⇒∗M β, β ∈ V ∗, then |πN (β)| ≤ kG.

Let G be a grammar. It is useful to identify leftmost minimal generations of
G with the sequences of productions used in such a derivation. More precisely,
let P ∗ be the set of the finite sequences of productions. We denote by DM (G)
the set of the sequences p1p2 · · · pn with pi ∈ P, 1 ≤ i ≤ n, n ≥ 1 such that
there exists a leftmost minimal derivation (2) with α ∈ T ∗. Thus, DM (G) is a
language on the alphabet P which ‘represents’ the leftmost minimal derivations
of the grammar G. Now, we assume that G is non-expansive and construct an
automaton A accepting DM (G).

Let kG be as in Lemma 3. The set of states of A will be Q = N≤kG . The
transitions will be the triples (α, p, β) such that α, β ∈ Q, p ∈ P and there is a
leftmost minimal generation

α =⇒
M,p

β′, with β′ ∈ V ∗ and β = πN (β′) .

The unique initial state is S and the unique terminal state is ε. The following
holds

Proposition 4. The automaton A accepts the language DM (G).

Now, we introduce the morphism φG : P ∗ → N̂[[T ]] defined as follows. If p is
the production X → α, then φG(p) = πT (α). The following holds.
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Lemma 5. Let G be a context-free grammar. If one has S ⇒r α, r ∈ P ∗,
α ∈ V ∗, then φG(r) = πT (α).

If G is non-expansive, by Lemma 5 one derives that whenever (2) is verified, one
has

φG(p1 · · · pn) = w. (3)

and thus one has φG
(
DM (G)

)
= G. More precisely, replacing the labels p of the

transitions of the automaton A by φ(p), one obtains a generalized automaton
whose behaviour is G. By the way, this gives a proof of the ‘if’ part of Theorem 1.

4 The CE Problem for non-expansive grammars

Tha aim of this section is to study the CE Problem for non-expansive grammars.
We provide a condition that assures that the language generated by such a gram-
mar is commutatively regular. More precisely, we will establish the following.

Theorem 6. Let G = 〈V, T, P, S〉 be an unambiguous, non-expansive grammar.
Assume that the following properties are satisfied:

i) for every production X → α of P , |α|T ≥ 2 Card(P );
ii) for every a ∈ T , there exists at most one production X → α of P such that

alphT (α) = {a}.

Then L(G) is commutatively regular.

In order to prove our theorem, we need the following

Lemma 7. Let M = (v1, . . . , vm) be a list of words of T+ such that:

i) for i = 1, . . . ,m, |vi| ≥ 2m;
ii) for every a ∈ T , there exists at most one word vi ∈ a+.

Then there exists a prefix code W = {w1, . . . , wm} of m distinct words such that,
for every i = 1, . . . ,m, one has wi ∼ vi.

Now we prove the following

Theorem 8. Let G be an unambiguous non-expansive grammar. Assume that
there exist a code W and a bijection f : P →W such that, for every production
p = (X → α) one has ψ(f(p)) = ψ(πT (α)). Then L(G) is commutatively regular.

Proof. We extend f to a morphism f̂ : P ∗ → T ∗ and set R = f̂(DM (G)). By
Proposition 4, DM (G) and, consequently, R are regular sets. We will show that
L(G) ∼ R. Let g : L(G) → R be the map defined as follows: for all w ∈ L(G),
g(w) = f̂(r), where S ⇒r w is the unique rightmost minimal derivation of w
in G. The map g is a bijection. Indeed, g(L(G)) = f̂(DM (G)) = R. Moreover,
taking into account that W is a code, one has that f̂ and, consequently, g are
injective. To complete the proof, it is sufficient to verify that for all w ∈ L(G),
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w ∼ g(w). Let S ⇒r w be the rightmost minimal derivation of w in G. By (3),
one has φG(r) = w. As one easily checks, for all p ∈ P , one has φG(p) = f(p).

This implies, in particular, φG(r) = f̂(r) = g(w). Thus, w = g(w), that is,

w ∼ g(w). We conclude that L(G) is commutatively equivalent to R. ut

Now we are ready to prove the main result of this section.

Proof (of Theorem 6). Let α1, . . . , αm be the list of the right sides of the pro-
ductions of G, m = Card(P ). One easily checks that the words vi = πT (αi),
1 ≤ i ≤ m, satisfy the hypotheses of Lemma 7. Thus, there exists a prefix
code W = {w1, . . . , wm} such that wi ∼ vi, 1 ≤ i ≤ m. Moreover, the function
f : P →W mapping any production pi = (X → αi) into the word wi is a bijec-
tion. The statement then follows from Theorem 8. ut

5 Minimal Linear grammars

Minimal linear grammars, first introduced by Chomsky and Schützenberger in
[6], provide the first non trivial example of grammars for which the CE Problem
can be investigated. A minimal linear grammar is a linear grammar with only
one non-terminal symbol X. Thus, the productions of a minimal linear grammar
can be written as

X → uiXvi, 1 ≤ i ≤ m, X → wj , 1 ≤ j ≤ n, (4)

with ui, vi, wj ∈ T ∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The productions X → wj will be
called terminal.

The derivation process of words in an unambiguous minimal linear grammar
is algebraically close to that of words in a monoid generated by a code. The
object of this section is to investigate the connections between such grammars
and codes with respect to the CE Problem. Clearly, minimal linear grammars are
non-expansive so that Theorems 6 and 8 apply to them. However, by exploiting
the connection between such grammars and codes, new conditions ensuring that
they generate a commutatively regular language can be set up.

Theorem 9. Let G be an unambiguous minimal linear grammar with the pro-
ductions (4). Suppose that there exists a prefix set Y = {y1, . . . , ym} such that
ψ(yi) = ψ(uivi), 1 ≤ i ≤ m. Then there exist words z1, . . . , zn such that
ψ(zi) = ψ(wi), 1 ≤ i ≤ n and L(G) is commutatively equivalent to the regu-
lar set Y∗{z1, . . . , zn}.

For any k ∈ N, denote by Lk the set of words {w ∈ T ∗ | X ⇒k+1 w}. If the
production X → ε is present in G, the previous theorem takes a simpler form.

Corollary 10. Let G be an unambiguous minimal linear grammar. Assume that
X → ε is a production of G and, for some k ∈ N, Lk is commutatively prefix.
Then L(G) is commutatively regular.
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A natural problem arising from the previous results is to figure out which
minimal linear grammars satisfy the hypotheses of Theorem 9 and Corollary 10.
Indeed, these grammars generate commutatively regular languages. In view of
the latter problem, an essential element of the study of the CE Problem is
the property of unambiguity of the grammar. We thus investigate conditions
that force these grammars to satisfy that property. These conditions mimic for
minimal linear grammars well-known properties of codes.

5.1 Measure of a minimal linear grammar

Let T be a finite alphabet and R+ be the set of non-negative real numbers. A
Bernoulli distribution µ on T is any map µ : T → R+, such that

∑
a∈T µ(a) = 1.

A Bernoulli distribution is positive if, for all a ∈ T, µ(a) > 0. Any Bernoulli
distribution µ over T is extended to a unique morphism (still denoted µ) of T ∗

into the multiplicative monoid R+. One then extends µ to the family of subsets
of T ∗ by setting, for every X ⊆ T ∗, µ(X) =

∑
x∈X µ(x). The following holds.

Proposition 11. Let G be an unambiguous minimal linear grammar with the
productions (4). For any Bernoulli distribution µ, one has

∑m
i=1 µ(uivi) ≤ 1.

Now we give a characterization of unambiguous minimal linear grammars.

Proposition 12. Let G be a minimal linear grammar and µ be a positive Ber-
noulli distribution on T . Then G is unambiguous if and only if the following two
conditions are satisfied:

1. no word of L(G) has two distinct derivations of length 2.
2. for all k ≥ 1, one has

µ

(
k⋃

i=0

Li

)
=

k∑
i=0

(
µ(L1)

µ(L0)

)i

µ(L0).

In the case where the only terminal production is X → ε, one has µ(L0) = 1
so that we obtain the following.

Corollary 13. Let G be a minimal linear grammar such that the only terminal
production is X → ε, and µ be a positive Bernoulli distribution on T . Then G
is unambiguous if and only if the following two conditions are satisfied:

1. no word of L(G) has two distinct derivations of length 2.
2. for all k ≥ 1, one has

µ

(
k⋃

i=0

Li

)
=

k∑
i=0

(µ(L1))
i
. (5)

By expressing the sum in the right side of (5) in term of the rational function
(1− xk+1)/(1− x) one gets

µ

(
k⋃

i=0

Li

)
=

1− µ(L1)k+1

1− µ(L1)
,
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that, for µ(L1) = 1, by continuity, will take the value k + 1.
Now, we present an application of the result above. Let k be a positive

integer. Generalizing a result of [3, Example 6.3], one can show that a subset L
of (a∗b)ka∗ is commutatively prefix if and only if its growth function gL satisfies
the inequality gL(n) ≤

(
n
k

)
for all n ≥ k. Thus, as an immediate consequence of

Corollary 10, we get:

Corollary 14. Let G be an unambiguous minimal linear grammar with the ter-
minal production X → ε. Assume that, for some h, k ∈ N, Lh ⊆ (a∗b)ka∗. If
the growth function gLh

of Lh satisfies the inequality gLk
(n) ≤

(
n
k

)
, n ≥ k, then

L(G) is commutatively regular.

We recall that a set L of words is said a Bernoulli set if, for every Bernoulli
distribution µ, µ(L) = 1. In [12], a remarkable result of de Luca shows that every
Bernoulli set contained in a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗, is commutatively prefix. As a
consequence of this result, Corollary 10 and Corollary 13 we get the following.

Corollary 15. Let G be a minimal linear grammar with the sole terminal pro-
duction X → ε. Assume that L1 ⊂ a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗ and no word of L(G)
has two distinct derivations of length 2. If for every Bernoulli distribution µ,
µ(
⋃k

i=0 Li) = k + 1, then L(G) is commutatively regular.

The problem whether every finite and complete code is commutatively prefix,
is still open. The conjecture was originally formulated by Schützenberger at
the end of 50’s for the case of finite codes (see [3, 12]). The conjecture in this
formulation has been disproved by Shor [22]. Indeed, the set L defined as:

L = {b, ba, ba7, ba13, ba14, a3b, a3ba2, a3ba4, a3ba6,
a8b, a8ba2, a8ba4, a8ba6, a11b, a11ba, a11ba2}

is a code which is not commutatively prefix. However a simple computation
shows that the growth function gL2 of L2 satisfies the inequality gL2(n) ≤

(
n
2

)
for all n ≥ 2 and, therefore, L2 is commutatively prefix. Thus one may ask
whether any finite code Y has a power Yn which is commutatively prefix. In
[12], a positive answer to the latter question has been conjectured in the case of
finite complete codes.

We close the paper with an open question. A theorem proven in [4] (see also
[12]) states that, for every set L of words of A+, any two of the following three
conditions imply the remaining one: (i) L is a code; (ii) L is a complete set, that
is, for every w ∈ A∗, A∗wA∗ ∩ L∗ 6= ∅; (iii) µ(L) = 1, where µ is a positive
Bernoulli distribution. This result provides a remarkable characterization of the
property of codicity in term of the notion of completeness and a measure of the
set. It would be interesting to get a similar characterization, of the property of
unambiguity for minimal linear grammars.
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