1,046 research outputs found

    A Comparison of Micro-Switch Analytic, Finite element, and Experimental Results

    Get PDF
    Electrostatically actuated, metal contact, micro-switches depend on having adequate contact force to achieve desired, low contact resistance. In this study, higher contact forces resulted from overdriving cantilever beam style switches, after pull-in or initial contact, until the beam collapsed onto the drive or actuation electrode. The difference between initial contact and beam collapse was defined as the useful contact force range. Micro-switch pull-in voltage, collapse voltage, and contact force predictions, modeled analytically and with the CoventorWare finite element software package, were compared to experimental results. Contact resistance was modeled analytically using Maxwellian spreading resistance theory. Contact resistance and contact force were further investigated by varying the width of the drive electrode. A minimum contact resistance of 0.26 Ω role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3eΩ was measured on micro-switches with 150 μm-wide drive electrodes. The useful contact force range for these devices was between 22.7 and 58.3 V. Contributions of this work include: a contact force equation useful for initial micro-switch designs, a detailed pull-in voltage, collapse voltage, and contact force investigation using CoventorWare, a direct comparison of measured results with analytic and finite element predictions, and a means of choosing a micro-switch operating point for optimized contact resistance performance

    Microswitches with Sputtered Au, AuPd,Au-on-AuPt, and AuPtCu Alloy Electric Contacts

    Get PDF
    This paper is the first to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1-2Omega. Preliminary reliability testing indicates a 3times increase in switching lifetime when compared to microswitches with sputtered Au electric contacts. The ternary alloy exhibited approximately a 6times increase in switch lifetime with contact resistance values ranging from approximately 0.2-1.8Omeg

    Micro-Switches with Sputtered Au, AuPd, Au-on-AuPt, and AuPtCu Alloy Electric Contacts

    Get PDF
    This work is the first to report on a new analytic model for predicting micro-contact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bi-metallic (i.e. gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6%)Pt)), binary alloy (i.e. Au-palladium (Pd), (Au-(2%)Pd)), and tertiary alloy (i.e. Au-Pt-copper (Cu), (Au-(5%)Pt-(0.5%)Cu)) electric contacts. The micro-switches with bi-metallic and binary alloy contacts resulted in contact resistance between 1-2 /spl Omega/ and, when compared to micro-switches with sputtered Au electric contacts, exhibited a 3.3 and 2.6 times increase in switching lifetime, respectively. The tertiary alloy exhibited a 6.5 times increase in switch lifetime with contact resistance ranging from 0.2-1.8 /spl Omega/

    Measurement and Modeling of Infrared Nonlinear Absorption Coefficients and Laser-induced Damage Thresholds in Ge and GaSb

    Get PDF
    Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 μm for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 μm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond pulses, respectively

    Searching for Dark Matter with Future Cosmic Positron Experiments

    Full text link
    Dark matter particles annihilating in the Galactic halo can provide a flux of positrons potentially observable in upcoming experiments, such as PAMELA and AMS-02. We discuss the spectral features which may be associated with dark matter annihilation in the positron spectrum and assess the prospects for observing such features in future experiments. Although we focus on some specific dark matter candidates, neutralinos and Kaluza-Klein states, we carry out our study in a model independent fashion. We also revisit the positron spectrum observed by HEAT.Comment: 19 pages, 33 figure

    Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions

    Full text link
    We consider Kaluza-Klein dark matter from latticized universal dimensions. We motivate and investigate two different lattice models, where the models differ in the choice of boundary conditions. The models reproduce relevant features of the continuum model for Kaluza-Klein dark matter. For the model with simple boundary conditions, this is the case even for a model with only a few lattice sites. We study the effects of the latticization on the differential flux of positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We find that for different choices of the compactification radius, the differential positron flux rapidly converges to the continuum model results as a function of the number of lattice sites. In addition, we consider the prospects for upcoming space-based experiments such as PAMELA and AMS-02 to probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA

    Supersymmetry and the positron excess in cosmic rays

    Get PDF
    Recently the HEAT balloon experiment has confirmed an excess of high-energy positrons in cosmic rays. They could come from annihilation of dark matter in the galactic halo. We discuss expectations for the positron signal in cosmic rays from the lightest superpartner. The simplest interpretations are incompatible with the size and shape of the excess if the relic LSPs evolved from thermal equilbrium. Non-thermal histories can describe a sufficient positron rate. Reproducing the energy spectrum is more challenging, but perhaps possible. The resulting light superpartner spectrum is compatible with collider physics, the muon anomalous magnetic moment, Z-pole electroweak data, and other dark matter searches.Comment: 4 pages, 2 figures, references added, minor wording change

    Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection

    Full text link
    We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-ray yields consistent with prior expectations. Moreover our success in utilizing solid rather than gas targets represents a significant simplification over our original approach and offers potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA
    • …
    corecore