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Abstract— This paper is the first to report on a new ana-
lytic model for predicting micro-contact resistance and the de-
sign, fabrication, and testing of microelectromechanical systems
(MEMS) metal contact switches with sputtered bi-metallic (i.e.
gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6%)Pt)), binary alloy
(i.e. Au-palladium (Pd), (Au-(2%)Pd)), and tertiary alloy (i.e.
Au-Pt-copper (Cu), (Au-(5%)Pt-(0.5%)Cu)) electric contacts. The
micro-switches with bi-metallic and binary alloy contacts resulted
in contact resistance between 1 − 2 Ω and, when compared to
micro-switches with sputtered Au electric contacts, exhibited a
3.3 and 2.6 times increase in switching lifetime, respectively. The
tertiary alloy exhibited a 6.5 times increase in switch lifetime
with contact resistance ranging from 0.2–1.8 Ω.

I. INTRODUCTION

Microelectromechanical systems (MEMS) switches are
paramount in importance for the future miniaturization of
radio frequency (RF) systems1. Space-based radar, phased
array radar, and phase shifters all depend on reliably switching
between RF loads. Because of their small geometries, excep-
tional RF performance, and low power consumption, MEMS
contact switches, like that shown in Fig. 1, are ideally suited
for these applications [1].

Fig. 1. A captured video image of a cantilever-style micro-switch.

1The views expressed in this article are those of the authors and do
not reflect the official policy or position of the United States Air Force,
Department of Defense, or the U.S. Government.

Important performance criteria for micro-switch applica-
tions are low contact resistance (< 1 − 2 Ω) and reliability
(> 108 “hot-switched” switch cycles). The two primary failure
mechanisms for MEMS metal contact switches are becoming
stuck closed (i.e. stiction) and increased contact resistance
with increasing switch cycles. Typically, micro-switches use
gold-on-gold contacts to achieve low contact resistance. Gold
(Au) is used due to its low resistivity and low susceptibility
to oxidation and contaminant gettering. However, MEMS
switches with Au contacts are prone to stiction and wear due to
Au’s relative low hardness (i.e. ∼ 1−2 GPa). The purpose of
this work is to develop an analytic model for predicting micro-
contact resistance and to fabricate micro-switches optimized
for increased wear with low contact resistance.

When modeling micro-contact resistance, neglecting bal-
listic electron transport [2] and contaminant film resistance
[3] underestimates contact resistance for low contact force
applications. Majumder, et al. considered ballistic and diffusive
electron transport by using Wexler’s interpolation [4] and con-
sidered contact material deformation by using Hertz’s elastic
[5] and Chang, et al.’s elastic-plastic [6] (i.e. the CEB model)
models [3]. Kogut and Komvopoulos derived an electrical
contact resistance (ECR) model for conductive rough surfaces
based on fractal geometry for the surface topography de-
scription, elastic-plastic deformation of contacting asperities,
and size-dependent electrical constriction resistance of micro-
contacts comprising the real contact area [7]. Additional work
by Kogut and Komvopoulos resulted in an ECR model for
conductive rough surfaces coated with a thin insulating layer
based fractal geometry to describe the surface topography,
elastic, elastic-plastic, and fully plastic deformation of surface
asperities, and quantum mechanics considerations for the
electric-tunnel effect through a thin insulating layer [8].

Majumder, et. al.’s model does not account for a contact load
discontinuity in the CEB model and uses a Gamma function,
needed for Wexler’s interpolation, that is not well defined
(Γ(K = ∞) �= 0). Majumder, et al.’s Gamma function predicts
ballistic and diffusive electron transport when the Knudsen
number (K) goes to infinity which should be the completely
ballistic region. In addition, the Kogut and Komvopoulos ECR
models, as well as Majumder, et al.’s model, are based on the
assumption that surface asperities have sufficient separation
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and are independent.
In this work, the independent surface asperity assumption

is no longer valid because sputtered electric contact films
are used. A new micro-contact resistance model is developed
using Chang’s [9] improvements to the CEB model [6] and
Mikrajuddin, et al.’s [10] derived Gamma function in Wexler’s
interpolation [4]. Lastly, contaminant film resistance is briefly
investigated using measured contact resistance data.

In addition, previous micro-switch work focused on opti-
mizing mechanical switch designs rather than investigating
new contact metals [11]. Notable exceptions are Majumder, et
al.’s and Duffy, et al.’s utilization of a “platinum group” and
Pt contact metals, respectively [12], [13]. These metals were
chosen over Au for their increased hardness and improved
wear characteristics. In order to achieve acceptable contact
resistance, Majumder, et al.’s micro-switches required multiple
(i.e. 4 to 8), parallel contacts and were packaged in a hermetic
environment while Duffy, et al.’s MEMS switches required
actuation voltages approximately 45 V higher than the pull-in
voltage. Schimkat studied Au-nickel (Ni) alloy (Au-(5%)Ni)
macro-switch contacts in a low-force test configuration [14]. In
this work, MEMS cantilever-style switches were designed and
fabricated with sputtered bi-metallic (i.e. Au-on-Au-platinum
(Pt), (Au-on-Au-(6%)Pt)), binary alloy (i.e. Au-palladium
(Pd), (Au-(2%)Pd)), and tertiary alloy (i.e. Au-Pt-copper (Cu),
(Au-(5%)Pt-(0.5%)Cu)) contact metals and hemispherical-
shaped upper and planar lower contact geometries.

Generally, micro-switches with Au electric contacts are
limited to approximately 106 “hot-switched” cycles because
evaporated Au is a soft metal and prone to wear [12], [15].
Zavracky, et al. report 5·108 “hot-switched” cycles and over
2·109 “cold-switched” cycles for micro-switches that were
packaged in nitrogen and had sputtered Au contacts [15].
Majumder, et al. reports greater than 107 “hot-switched” cycles
and approximately 1011 “cold-switched” cycles for micro-
switches with a “platinum group” contact metal [12]. In this
work, test results for micro-switches with bi-metallic, binary
alloy, and tertiary alloy contact metals are presented.

II. CONTACT RESISTANCE MODELING

An understanding of contact mechanics is needed to design
micro-sized electric contacts and predict contact resistance.
There are two primary considerations; 1) how the contact
material deforms (elastic, plastic, or elastic-plastic) and 2) the
radius of the contact area.

A. Material Deformation Models

1) Elastic: When two surfaces intially come together, with
low contact force, surface asperities (i.e. a-spots) undergo
elastic deformation. Equations 1 and 2 define contact area and
force for a single a-spot as a function of vertical deformation
[9].

A = πRα (1)

where A is contact area, R is asperity peak radius of
curvature, and α is asperity vertical deformation.

Fc =
4
3
E′α

√
Rα (2)

where Fc is the normal contact force and E′ is the Hertzian
modulus derived from

1
E′ =

1 − ν2
1

E1
+

1 − ν2
2

E2
(3)

where E1 is the elastic modulus for contact one, ν1 is
Poisson’s ratio for contact one, E2 is the elastic modulus for
contact two, and ν2 is Poisson’s ratio for contact two.

For circular areas (i.e. A = πr2), (1) and (2) are related to
the contact area radius (r) through Hertz’s model [5]:

r = 3

√
3FcR

4E′ . (4)

When deformation is no longer reversible and the applied
load is approximately three times the yield point (Y ), ideal
plastic material deformation begins [5].

2) Plastic: Plastic material deformation is modeled using
Abbott and Firestone’s well-known fully plastic contact model
[16]. This model assumes that contact pressure is sufficiently
large and has been applied long enough for all material creep
to cease. Single asperity contact area and force are defined
using (5) and (6):

A = 2πRα (5)

Fc = HA (6)

where H is the Meyer hardness of the softer material [9].
Using (6), circular contact area radius is related to contact

force through (7) [5]:

r =

√
Fc

Hπ
. (7)

An area discontinuity at the transition from ideal elastic to
ideal plastic behavior is revealed when the elastic model from
section II-A and this plastic model are used together [5]. The
CEB model, discussed next, addresses this issue by assuming
volume conservation of deformed surface asperities [6].

3) Elastic-Plastic: Elastic-plastic material deformation
refers to when parts of the contact area are plastically deform-
ing but encased by elastically deformed material. The CEB
model describes material deformation that occurs between the
ideal elastic and ideal plastic regions [17].

Equations 8 and 11 are the CEB model’s contact area and
force equations, respectively [6].

A = πRα(2 − αc

α
) (8)

where αc is critical vertical deformation, where elastic-
plastic behavior begins, given as:

αc = R(
KHHπ

2E′ )2. (9)
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where KH is the hardness coefficient (assumed to be equal
to 0.6 at the initial onset of plasticity [6]) given as:

KH = 0.454 + 0.41ν (10)

where ν is Poisson’s ratio.

Fc = KHHA (11)

In the CEB elastic-plastic model, a contact load discontinu-
ity exists at the transition from elastic to elastic-plastic material
deformation. Kogut and Etison addressed this by using finite
element methods to model the elastic-plastic region with
normalized contact force and area equations based on Hertzian
elastic contact mechanics equations [18]. Chang observed that
ideal plastic behavior normally occurred at 3Y , not KY Y ,
where KY is the yield coefficient, and updated the CEB model
using a linear interpolation [9]. Chang’s new force equation
for elastic-plastic material deformation is given by (12):

Fc = [3 + (
2
3
KY − 3)

αc

α
]Y A. (12)

where KY = 1.1282 + 1.158ν [9].
The yield strength for most metals is related to its hardness

through (13) [9]:

Y = 0.354H. (13)

When KY and (13) are substituted into (12), Equation 14
results:

Fc = [1.062 + 0.354(
2
3
KY − 3(

αc

α
))]HA. (14)

Equations 8 and 14 represent the new CEB model [6]
updated with Chang’s improvements [9].

For circular areas, (14) is used to relate the contact area
radius and the contact force through:

r =

√
Fc

Hπ[1.062 + 0.354(2
3KY − 3(αc

α ))]
. (15)

The contact area radius, determined from material deforma-
tion models, is a function of the contact force generated by
the micro-switch.

B. Contact Force and Area

Contact force is a compressive force that causes material
deformation by bulging [17]. Generally, MEMS switches are
electrostatic devices that produce low contact forces ranging
from tens of µN ’s up to a few mN ’s.

In micro-switches, contact force is defined by the mechan-
ical switch design while contact area is defined by contact
geometry, surface roughness, elastic modulus, and material
hardness. From this description two contact area models have
developed: 1) the multiple a-spot and 2) the single effective
a-spot.

The multiple asperity model is based on Greenwood and
Williamson’s “asperity-based model” for elastic material de-
formation and Abbott and Firestone’s “profilometric model”
for plastic deformation [16], [19].

The assumptions used by Greenwood and Williamson fol-
low: 1) rough contact surfaces are isotropic, 2) all surface
asperity peaks are spherical with the same radii of curvature,
3) asperity height is randomly distributed, 4) asperities are far
apart and independent, 5) material deformation occurs only
in the asperities, and 6) no heating occurs. McCool studied
anisotropic rough surfaces with randomly distributed ellipti-
cally asperities which revealed exceptional agreement with
Greenwood and Williamson’s simpler model [20]. Greenwood
and Tripp showed that two rough contacting surfaces could be
modeled by an equivalent single rough surface contacting a
flat, smooth surface [21].

In the single effective asperity model, the individual contact
spots are close together and their interactions are not indepen-
dent. In this situation, the effective contact area is defined as
the sum, not the parallel combination, of the individual contact
areas. Fig. 2 illustrates the multiple a-spot and single effective
a-spot models and the notion of an effective contact area radius
(reff ).

Majumder, et al. predicted a lower contact resistance bound
when using the multi-asperity model and an upper contact
resistance bound when using the single effective a-spot model
[3].

The contact area radius dictates how electrons are trans-
ported through electrical connections. A brief discussion about
the resistance resulting from ballistic, quasi-ballistic, and dif-
fusive electron transport follows.

C. Contact Resistance and Electron Transport

Contact resistance (RC), defined by (16), results from
making electrical connections and considers the effects of
constriction (Rc) and contaminant film (Rcf ) resistances [5]:

RC = Rc + Rcf . (16)

Constriction resistance arises because electrical current can
only flow through a-spots created during switch closure.
“Classic” constriction resistance, based on diffusive electron

=

Apparent Radius (ra)
Effective Radius (reff)

dij

rk

a-spot i

a-spot j
a-spot k

Fig. 2. Top view of the multiple asperity (left) and single effective asperity
(right) contact area models.
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transport, is modeled analytically using (17) which is based
on Maxwellian spreading resistance theory [5]:

Rc =
ρ

2reff
(17)

where Rc is constriction resistance and ρ is resistivity [5].
Constriction resistance is equal to contact resistance when
contaminant film resistance is neglected.

When considering circular contact areas, (18) and (19)
are the resulting “classic” macro-switch contact resistance
equations that show Rc ∝ F

(− 1
3 )

c for elastic deformation and
Rc ∝ F

(− 1
2 )

c for plastic deformation [5].

RcDE =
ρ

2
3

√
4E′

3FcR
(18)

where RcDE is contact resistance for diffusive electron
transport and elastic material deformation and

RcDP =
ρ

2

√
Hπ

Fc
(19)

where RcDP is contact resistance for diffusive electron
transport and plastic material deformation.

Micro-switches produce lower contact force than macro-
switches which leads to smaller contact areas. When contact
area radius is compared to an electron’s elastic mean free path
(le), the following electron regions are defined: ballistic, quasi-
ballistic, and diffusive [22]. The ballistic region is when the
elastic mean free path is greater than the effective contact
radius (i.e. le > reff ), the quasi-ballistic region is when
le ∼ reff , and the diffusive region is when le � reff [3],
[22]. The mean free path for most metals is approximately
500 Å [22]. Fig. 3 illustrates the ballistic and diffusive electron
transport regions [22].

Fig. 3. Schematic illustration of diffusive (left) and ballistic (right) electron
transport in a conductor [22].

Equation 20 or the Sharvin resistance is a semiclassical
approximation for resistance when electrons exhibit ballistic
transport behavior [22].

RS =
4ρK

3πreff
(20)

where RS is the so-called Sharvin resistance and K is the
Knudsen number given as:

K =
le

reff
. (21)

Wexler derived (22) as an interpolation between the ballistic
and diffusive electron transport regions [4]:

RW =
4ρK

3πreff
[1 +

3π

8
Γ(K)

reff

le
]

= RS + Γ(K)Rc (22)

where RW is the so-called Wexler resistance and Γ(K) is
a slowly varying Gamma function of unity order [4].

Mikrajuddin, et al. derived a well behaved Gamma function
from first principles:

Γ(K) ≈ 2
π

∫ ∞

0

e−KxSinc(x) dx (23)

where Sinc(x) is defined as being equal to one when x = 0
and equal to Sin(x)

x when x �= 0 [10]. Fig. 4 is a plot of
Mikrajuddin, et al.’s Gamma function that was solved using a
recursive Newton-Cotes numerical integration formula.

D. New Micro-Contact Resistance Model

A new analytic micro-contact resistance model, based on
the the single effective a-spot contact area model, is developed
using Hertz’s elastic [5], Chang’s [9] improvements to the CEB
model, Mikrajuddin, et al.’s [10] derived Gamma function,
and Wexler’s interpolation from ballistic to diffusive electron
transport [4]. The single effective a-spot contact area model is
needed because the independence of the surface asperities can
no longer be assumed when using sputtered contact films with
low surface roughness (i.e. ≈ 30 − 50 Å) and tightly packed
material grain structures (i.e. ≈ 50 Å in diameter). In addi-
tion, the micro-switch’s contact geometries (i.e. hemispherical-
shaped upper and planar lower) match the elastic and elastic-
plastic material deformation models presented earlier.

For circular contact areas and elastic material deformation, a
contact resistance equation is derived for the ballistic electron
transport region by substituting (4) into (20) resulting in:

RcBE =
4ρK

3π
3

√
4E′

3FcR
(24)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100
Knudsen Number (K)

G
am

m
a(

K
)

Diffusive Electron 
Transport Region

Ballistic Electron 
Transport Region

Q
uasi-Ballistic R

egion

Fig. 4. A plot of Mikrajuddin, et al.’s derived Gamma function.
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where RcBE is the contact resistance for ballistic electron
transport and elastic deformation.

Equation 25, the new micro-contact resistance model for
elastic deformation, results when (24) and (18) are substituted
into (22):

RWE = RcBE + Γ(K)RcDE (25)

where RWE is the Wexler resistance for elastic material
deformation.

Equation 26 is a contact resistance equation based on ballis-
tic electron transport and elastic-plastic material deformation
and is found by substituting (15) into (20).

RcBEP =
4ρK

3π

√
Hπ[1.062 + 0.354( 2

3KY − 3(αc

α ))]
Fc

(26)

Equation 27 is a contact resistance equation based on diffu-
sive electron transport and elastic-plastic material deformation
and is found by substituting (15) into (17).

RcDEP =
ρ

2

√
Hπ[1.062 + 0.354( 2

3KY − 3(αc

α ))]
Fc

(27)

Equation 28, the new micro-contact resistance model for
elastic-plastic deformation, results when (26) and (27) are
substituted into (22):

RWEP = RcBEP + Γ(K)RcDEP (28)

where RWEP is the Wexler resistance for elastic-plastic
material deformation.

III. MEMS SWITCHES

A brief discussion of the design, fabrication, and testing of
the micro-switches in this study, shown in Fig. 1, is presented
next.

A. Design

In metal contact micro-switches, initial switch closure is
defined by the pull-in voltage. At pull-in physical contact
between the upper (i.e. dimples) and lower contacts is first
established with minimal contact force. As the actuation
voltage is increased, contact force also increases and material
deformation causes the contact area to increase. After pull-in,
the micro-switch is modeled as a deflected beam with a fixed
end, a simply supported end, and an intermediately placed load
as illustrated in Fig. 5.

Using a parallel plate capacitor model and neglecting fring-
ing fields, the intermediately placed load is modeled as:

Fe =
εoAsaV

2

2g2
(29)

where Fe is the electrostatic force, εo is the permittivity of
free space, Asa is the surface area of the smaller parallel plate,
V is the actuation voltage, and g is the gap between the plates
[23].

Fc

y

x

x = lx = 0

Fe

a

g

l

dc

Fig. 5. Cantilever beam model with a fixed end at x = 0, a simply supported
end at x = l, and an intermediately placed load (Fe) at x = a.

Equation 30 is the resulting contact force equation:

Fc = [
Fea

2

2l3
(3l − a) − EIzdc

l3
] (30)

where Fc is contact force, a is the location of the electro-
static force, l is beam length, dc is beam tip deflection distance,
and Iz is the area moment of inertia about the z-axis defined
by:

Iz =
wt3

12
(31)

where w is the beam width and t is the beam thickness [24].
Micro-switch contact force, illustrated by Fig. 6, is mapped

to actuation voltage using (30).
After completing the micro-switch mechanical design, using

(29) through (31), a compatible thin film deposition process
(i.e. co-sputtering) was chosen and candidate electric contact
metal alloys were selected.

B. Fabrication

The micro-switches in this study were fabricated on highly
resistive sapphire substrates. Four wafers of devices, each
with a different contact metallurgy (i.e. sputtered Au, Au-
on-Au-(6%)Pt, Au-(2%)Pd, and Au-(5%)Pt-(0.5%)Cu) were
individually fabricated using the process illustrated in Fig. 7.
Refer to Fig. 7 for the following discussion.

0.0

20.0

40.0

60.0

80.0

50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0

Actuation Voltage (V)

C
on

ta
ct

 F
or

ce
 (

µ
N

)

Fig. 6. Micro-switch contact force (per contact) plot.
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Anchor and dimple patterning

Electroplated structural layer

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Sacrificial photoresist layer

Evaporated gold bottom metal 
(anchor, electrode, and lower contact)

Sputtered contact metal

Sputtered contact metal

Released device

Air contact gap

Re-flowed hinge and upper contact

Released micro-switch

Sapphire Substrate

Sacrificial photoresist

Fig. 7. Illustration of the micro-switch fabrication process.

The actuation electrode and lower electric contact layers
were approximately 3000 Å of evaporated Au patterned using
a standard metal lift-off technique (a) [25]. A thin (200 Å-
thick) chromium (Cr) layer was used under the evaporated Au
layer to help the Au remain adhered to the substrate. The lower
electric contact metal was sputter deposited (500 Å-thick) and
patterned using a metal lift-off technique (b).

The beam’s gap or sacrificial layer was approximately
3 µm-thick and created using MicroChem’s polydimethyl-
glutarimide (PMGI) based photoresist (c) [26]. The micro-
switch’s hinge geometry was defined in the sacrificial pho-
toresist using standard photolithography techniques while the
upper contact geometries were defined by a partial expose
and develop of the sacrificial photoresist layer (d). A timed
re-flow in an oven with flowing nitrogen was used to reform
the dimple into a hemispherical-shaped upper contact bump
(e).

The upper contact metals were also sputter deposited
(500 Å-thick), and patterned using standard photolithography
techniques (e). The upper contact material, located on the
underside of the cantilever beam, is highlighted in Fig. 8.

After electroplating the cantilever’s gold structural layer
(5 µm-thick) (f), the devices were released using a CO2

critical point dryer and tested to ensure proper operation and
performance (g).

C. Test Results

A series of five micro-switches were tested on four differ-
ent wafers (20 switches total) to experimentally characterize
contact resistance and micro-switch lifetime. The experimental
setup is illustrated in Fig. 9.

The micro-switches were tested by wafer probing using an
Alessi Rel-4100A microprobe station with standard micro-
probes. The actuation voltage was applied using an HP 3245A
universal source and a Krohn-Hite wideband amplifier. Closed
switch resistance was measured using an HP 3458A multime-
ter in a four-point probe configuration. Contact resistance was
found by subtracting the measured beam resistance from the

Hemispherical-shaped 
upper electric contactsElectroplated Au

Sputtered Au-(5%)Pt-(0.5%)Cu alloy 
(500Å-thick)

Probing Damage

75µm-wide

5µm-thick

Fig. 8. Scanning electron micrograph (SEM) image showing the
hemispherical-shaped upper contacts and the sputtered electric contact metal.
Probing damage occurred while flipping the cantilever beam for imaging.

closed switch resistance measurements.
During contact resistance testing, a voltage ranging from

0 to 120 V in 0.5 V increments was applied between the
cantilever beam and the actuation electrode. The micro-switch
closes when the actuation voltage exceeds the pull-in voltage.
As the applied voltage is increased, beyond the pull-in volt-
age, contact force increases and contact resistance decreases.
Contact resistance data were collected each time the actuation
voltage was incremented. This test was accomplished twice for
each micro-switch with approximately 10-15 seconds between
the experiments. The average minimum contact resistance
data, with 120 V of applied actuation voltage, are summarized
in Table I. For comparison, simulated contact resistance values,
calculated using measured material properties and (28), are
also provided in Table I.

Table I shows that the average minimum contact resistance
is higher than the simulated values. This discrepancy is partly

Actuation Electrode
Cantilever Beam

HP 3245A 
Universal Source

I+HP 3458A 
Multimeter

V- V+

Anchor

Signal line

Contact Areas
V- V+

Wideband 
Amplifier

I-

Fig. 9. Experimental test set up used to measure pull-in voltage, contact
resistance, and switch lifetime.
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TABLE I

AVERAGE MINIMUM CONTACT RESISTANCE (Rc) AND STANDARD

DEVIATION FOR MEASURED DATA. SIMULATED Rc WAS FOUND USING

MEASURED MATERIAL PROPERTIES AND (28).

Metal/Alloy Rc / StdDev Rc / StdDev Rc

Experiment 1 Experiment 2 Simulated
Au 0.94 / 0.20 0.83 / 0.19 0.096

Au-(2%)Pd 0.63 / 0.19 0.49 / 0.07 0.165
Au-on-Au-(6%)Pt 0.73 / 0.13 0.67 / 0.16 0.136

Au-(5%)Pt-(0.5%)Cu 0.34 / 0.33 0.33 / 0.30 0.197

due to adsorbed contaminant films on the electric contact’s sur-
face. This hypothesis is backed by contact resistance, collected
during experiment two, that is lower than data collected for
experiment one. It appears that a contaminant film has been
“wiped” away during experiment one resulting in “cleaner”
contacts for experiment two.

Contact resistance data, from a representative micro-switch
with Au electric contacts, and simulated contact resistance,
calculated using (25), (28), and measured material properties,
are plotted on Fig. 10. The data on Fig. 10 shows a sharp
decrease in contact resistance at approximately ∼ 93 V for
micro-switches tested the first time. This drop in measured
contact resistance was consistent and occurred between 90 V
and 98 V for all the micro-switches tested. We believe this
anomaly was caused by the fritting of a contaminant film [27].
During experiment two this anomaly was less drastic, most
likely, because the contaminant film was “cleaned” off the
contact than during the first experiment.

Fig. 11 shows measured and simulated contact resistance for
micro-switches with Au-(5%)Pt-(0.5%)Cu electric contacts.
The measurements, shown on Fig. 11, are somewhat lower
than the simulated values and fritting is less obvious. We
believe this is a result of the single effective asperity model,
used in this study, not accurately representing the actual
contact area for these micro-switches. Recall that Majumder, et
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Fig. 10. Contact resistance (Rc) data for a representative micro-switch with
sputtered Au electric contacts.

0.00

0.20

0.40

0.60

0.80

1.00

50 60 70 80 90 100 110 120
Actuation Voltage (V)

C
on

ta
ct

 R
es

is
ta

nc
e 

(O
hm

s)

AuPtCu Rc Data Exp. 1

AuPtCu Rc Data Exp. 2

Simulated Rc Data

Fig. 11. Contact resistance (Rc) data for a selected micro-switch with Au-
(5%)Pt-(0.5%)Cu electric contacts.

al. showed a contact resistance lower limit using the multiple
asperity-based model and an upper limit using the single
effective asperity-based mode. This may indicate that the Au-
(5%)Pt-(0.5%)Cu films have larger material grains and higher
surface roughness and are better represented using the multi-
asperity contact area model.

In addition, during experiment one a resistance increase
from 0.20 to 0.22 Ω was measured at ∼ 93 V . We believe that
localized contact area heating caused the tertiary contact alloy
to change phase or form an intermetallic compound resulting
in this small increase in resistance. This hypothesis is backed
by resistance data, collected during the second experiment, that
are higher than data from the first experiment (i.e. between
70 V and 93 V ). For actuation voltages higher than ∼ 93 V
the measured resistance values from both experiments agree.
This may indicate that the contact material was in a stable
phase during the second experiment. This anomaly was most
likely not observed in the micro-switches with binary alloy
contacts because their alloy compositions avoided miscibility
gaps and the formation of intermetallic compounds [28].

During lifecycle testing, the micro-switches were actuated
with a 50% duty cycle square wave input. The waveform’s
“on” voltage level was set to the pull-in voltage plus ap-
proximately 1-3 V for increased contact force. The input
waveform’s frequency was set below the beam’s resonant
frequency. The micro-switches were cycled continuously until
they failed open (i.e. infinite resistance) or closed (i.e. stuck
down). Contact resistance data were collected every 30 sec-
onds by increasing the input waveform’s duty cycle to 90% and
lowering its frequency to 1 Hz for 2 seconds. The multimeter’s
open circuit voltage (∼ 8.2 V ) was present on the contacts
for all the switching events (i.e. “hot-switching”). The success
criteria for this testing was measured contact resistance less
than ∼ 2 Ω and infinite open switch resistance.

Micro-switch contact resistance versus switch cycles is plot-
ted on Fig. 12. The raw data was curve fitted with trendlines
for selected micro-switches with different contact metals.
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The micro-switches with bi-metallic (Au-on-Au-(6%)Pt)
and binary alloy (Au-(2%)Pd) contacts resulted in contact
resistance between 1 − 2 Ω and, when compared to micro-
switches with sputtered Au electric contacts, exhibited a 3.3
and 2.6 times increase in switching lifetime, respectively.
The micro-switches with tertiary alloy (Au-(5%)Pt-(0.5%)Cu)
contacts exhibited a 6.5 times increase in switch lifetime with
contact resistance ranging from 0.2–1.8 Ω. This was most
likely due to the increased material hardness of the sputtered
metal alloys. Also, the micro-switches with sputtered Au
contacts outperformed other micro-switches with Au contacts
[12]. Once again, this was most likely due to the increased
material hardness of the sputtered Au contact metals. The
measured Meyer hardness of evaporated Au, sputtered Au,
Au-(2%)Pd, Au-(6%)Pt, and Au-(5%)Pt-(0.5%)Cu thin films
were approximately 1.0 GPa, 1.7 GPa, 1.9 GPa, 2.0 GPa,
and 2.2 GPa, respectively.

The micro-switches with Au-(5%)Pt-(0.5%)Cu contacts ex-
hibited increased contact resistance with increased numbers
of switch cycles. The plot on Fig. 12 shows a steady rise
in contact resistance between 107 and 7.1·108 switch cycles.
This may indicate that a contaminant film, induced by contact
wear, was developing. This hypothesis is supported by the high
closed switch resistance failure mechanism observed while
testing these micro-switches. The other micro-switches, with
Au and binary alloy contacts, all failed due to stiction.

IV. CONCLUSIONS

The purpose of this work was to develop a new ana-
lytic contact resistance model for micro-switches employing
hemispherical-shaped upper contacts and sputtered contact
metals, and to show the design, fabrication, and test results for
micro-switches with metal alloy electric contacts. Overall, the
results show increased micro-switch wear performance at the
expense of a small increase in contact resistance for devices
with bi-metallic, binary alloy, and tertiary alloy contacts.
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