1,801 research outputs found

    Fixed points and vacuum energy of dynamically broken gauge theories

    Get PDF
    We show that if a gauge theory with dynamical symmetry breaking has non-trivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.Comment: 17 pages, uuencoded latex file, 3 figures, uses epsf and epsfig. Submitted to Mod. Phys. Lett.

    Entropy in quantum chromodynamics

    Full text link
    We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including . The second is vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a <qˉq>< \bar{q}q> condensate.Comment: 22 pages, 2 figures. Preprint version of invited review for Modern Physics Letters

    Center vortices and confinement vs. screening

    Full text link
    We study adjoint and fundamental Wilson loops in the center-vortex picture of confinement, for gauge group SU(N) with general N. There are N-1 distinct vortices, whose properties, including collective coordinates and actions, we study. In d=2 we construct a center-vortex model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential in this d=2 model for all N, as an expansion in powers of ρ/M2\rho/M^2, where ρ\rho is the vortex density per unit area and M is the vortex inverse size, and find, as expected, screening. The leading term of the adjoint potential shows a roughly linear regime followed by string breaking when the potential energy is about 2M. This leading potential is a universal (N-independent at fixed fundamental string tension KFK_F) of the form (KF/M)U(MR)(K_F/M)U(MR), where R is the spacelike dimension of a rectangular Wilson loop. The linear-regime slope is not necessarily related to KFK_F by Casimir scaling. We show that in d=2 the dilute vortex model is essentially equivalent to true d=2 QCD, but that this is not so for adjoint representations; arguments to the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the Wilson loop in the vortex flux. Most of our arguments are expected to hold in d=3,4 also.Comment: 29 pages, LaTex, 1 figure. Minor changes; references added; discussion of factorization sharpened. Major conclusions unchange

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    The Gluon Propagator on a Large Volume, at β=6.0\beta=6.0

    Full text link
    We present the results of a high statistics lattice study of the gluon propagator, in the Landau gauge, at β=6.0\beta=6.0. As suggested by previous studies, we find that, in momentum space, the propagator is well described by the expression G(k2)=[M2+Zk2(k2/Λ2)η]1G(k^2)= \Big[ M^2 + Z\cdot k^2(k^2/\Lambda^2)^\eta\Big]^{-1} . By comparing G(k2)G(k^2) on different volumes, we obtain a precise determination of the exponent η=0.532(12)\eta=0.532(12), and verify that M2M^2 does not vanish in the infinite volume limit. The behaviour of η\eta and M2M^2 in the continuum limit is not known, and can only be studied by increasing the value of β\beta.Comment: 21 pages, uuencoded LATEX plus 5 postscript figures. ROME prep. 94/1042, SHEP prep. 93/94-3

    On the center-vortex baryonic area law

    Full text link
    We correct an unfortunate error in an earlier work of the author, and show that in center-vortex QCD (gauge group SU(3)) the baryonic area law is the so-called YY law, described by a minimal area with three surfaces spanning the three quark world lines and meeting at a central Steiner line joining the two common meeting points of the world lines. (The earlier claim was that this area law was a so-called Δ\Delta law, involving three extremal areas spanning the three pairs of quark world lines.) We give a preliminary discussion of the extension of these results to SU(N),N>3SU(N), N>3. These results are based on the (correct) baryonic Stokes' theorem given in the earlier work claiming a Δ\Delta law. The YY-form area law for SU(3) is in agreement with the most recent lattice calculations.Comment: 5 pages, RevTeX4, 5 .eps figure

    Quantum properties of general gauge theories with composite and external fields

    Get PDF
    The generating functionals of Green's functions with composite and external fields are considered in the framework of BV and BLT quantization methods for general gauge theories. The corresponding Ward identities are derived and the gauge dependence is investigatedComment: 24 pages, LATEX, slightly changed to clarify the essential new aspect concerning composite fields depending on external ones; added formulas showing lack of (generalized) nilpotence of operators appearing in the Ward identitie

    Baryon number non-conservation and phase transitions at preheating

    Get PDF
    Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models; generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well and stay there (except for tunneling) if the upper well is not resonant. Another example occurs in hybrid inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak (EW) gauge potentials, leading to rapid transitions over sphaleron barriers and consequent B+L violation. Given an appropriate CP-violating seed, we find that preheating can drive a time-varying condensate of Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these examples numerically and to some extent analytically. The emphasis in the present paper is on the generic mechanisms, and not on specific preheating models; these will be discussed in a later paper.Comment: 10 pages, 7 figures included, revtex, epsf, references adde

    On topological charge carried by nexuses and center vortices

    Full text link
    In this paper we further explore the question of topological charge in the center vortex-nexus picture of gauge theories. Generally, this charge is locally fractionalized in units of 1/N for gauge group SU(N), but globally quantized in integral units. We show explicitly that in d=4 global topological charge is a linkage number of the closed two-surface of a center vortex with a nexus world line, and relate this linkage to the Hopf fibration, with homotopy Π3(S3)Z\Pi_3(S^3)\simeq Z; this homotopy insures integrality of the global topological charge. We show that a standard nexus form used earlier, when linked to a center vortex, gives rise naturally to a homotopy Π2(S2)Z\Pi_2(S^2)\simeq Z, a homotopy usually associated with 't Hooft-Polyakov monopoles and similar objects which exist by virtue of the presence of an adjoint scalar field which gives rise to spontaneous symmetry breaking. We show that certain integrals related to monopole or topological charge in gauge theories with adjoint scalars also appear in the center vortex-nexus picture, but with a different physical interpretation. We find a new type of nexus which can carry topological charge by linking to vortices or carry d=3 Chern-Simons number without center vortices present; the Chern-Simons number is connected with twisting and writhing of field lines, as the author had suggested earlier. In general, no topological charge in d=4 arises from these specific static configurations, since the charge is the difference of two (equal) Chern-Simons number, but it can arise through dynamic reconnection processes. We complete earlier vortex-nexus work to show explicitly how to express globally-integral topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page
    corecore