1,087 research outputs found

    The Mediterranean island states : Malta and Cyprus

    Get PDF
    The 2004 European Union enlargement also included the Mediterranean island-states of Cyprus and Malta, two former British colonies and members of the British Commonwealth. The islands share a number of similarities but they are also dissimilar in uniquely distinct ways. The membership applications of both states initially presented the EU with a number of political difficulties. With respect to Cyprus, many member states would have preferred to see the island join the Union after the ‘Cyprus Problem’ had been settled. As for Malta, the island showed a very high degree of Euroskepticism. It froze its application in 1996 but reactivated it in 1998. Apart from this skepticism the island’s neutral status, enshrined in the Constitution could present insurmountable problems.peer-reviewe

    Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms

    Get PDF
    Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors reduced but not abolished it. Importantly, GUO-mediated neuron-like cell differentiation was independent of adenosine receptor activation as it was not altered by the blockade of these receptors. Noteworthy, the neuritogenic activity of GUO was not affected by blocking the phosphoinositide 3-kinase pathway, while it was reduced by inhibitors of protein kinase C or soluble guanylate cyclase. Furthermore, the inhibitor of the enzyme heme oxygenase-1 but not that of nitric oxide synthase reduced GUO-induced neurite outgrowth. Interestingly, we found that GUO was largely metabolized into guanine by the purine nucleoside phosphorylase (PNP) enzyme released from cells. Taken together, our results suggest that GUO, promoting neuroblastoma cell differentiation, may represent a potential therapeutic agent; however, due to its spontaneous extracellular metabolism, the role played by the GUO-PNP-guanine system needs to be further investigated

    Antiabsence effects of carbenoxolone in two genetic animal models of absence epilepsy (WAG/Rij rats and lh/lh mice)

    Get PDF
    Carbenoxolone (CBX), the succinyl ester of glycyrrhetinic acid, is an inhibitor of gap junctional intercellular communication. We have tested its possible effects upon two genetic animal models of epilepsy (WAG/Rij rats and lethargic (lh/lh) mice). Systemic administration of CBX was unable to significantly affect the occurrence of absence seizures in WAG/Rij rats. In particular, intravenous (5-40 mg/kg) or intraperitoneal (i.p.; 10-80 mg/kg) administration of CBX was unable to significantly modify the number and duration of spike-wave discharges (SWDs) in WAG/Rij rats, whereas the bilateral microinjection (0.05, 0.1, 0.5 and 1 microg/0.5 microl) of CBX into nucleus reticularis thalami (NRT) and nucleus ventralis posterolateralis (VPL) thalami produced a decrease in the duration and the number of SWDs. Bilateral microinjection of CBX into nucleus ventroposteromedial (VPM) thalami did not produce any significant decrease in the number and duration of SWDs. On the contrary, i.p. (5-40 mg/kg) or intracerebroventricular (0.5, 1, 2 and 4 microg/2 microl) administration of CBX in lh/lh mice induced a marked decrease in the number and duration of SWDs in a dose-dependent manner. At the doses used no movement disorders, or other behavioural changes, were recorded in both WAG/Rij rats and lh/lh mice. No effects were observed in both animal models following systemic or focal administration of glycyrrhizin into the same brain areas where CBX was shown to be effective

    Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes

    Get PDF
    Carotenoid pigment content is an important quality trait as it confers a natural bright yellow color to pasta preferred by consumers (whiteness vs. yellowness) and nutrients, such as provitamin A and antioxidants, essential for human diet. The main goal of the present review is to summarize the knowledge about the genetic regulation of the accumulation of pigment content in durum wheat grain and describe the genetic improvements obtained by using breeding approaches in the last two decades. Although carotenoid pigment content is a quantitative character regulated by various genes with additive effects, its high heritability has facilitated the durum breeding progress for this quality trait. Mapping research for yellow index and yellow pigment content has identified quantitative trait loci (QTL) on all wheat chromosomes. The major QTL, accounting for up to 60%, were mapped on 7L homoeologous chromosome arms, and they are explained by allelic variations of the phytoene synthase (PSY) genes. Minor QTL were detected on all chromosomes and associated to significant molecular markers, indicating the complexity of the trait. Despite there being currently a better knowledge of the mechanisms controlling carotenoid content and composition, there are gaps that require further investigation and bridging to better understand the genetic architecture of this important trait. The development and the utilization of molecular markers in marker-assisted selection (MAS) programs for improving grain quality have been reviewed and discussed

    Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells

    Get PDF
    PED/PEA-15 is a death effector domain (DED) family member with a variety of effects on cell growth and metabolism. To get further insight into the role of PED in cancer, we aimed to find new PED interactors. Using tandem affinity purification, we identified HSC70 (Heat Shock Cognate Protein of 70kDa)-which, among other processes, is involved in chaperone-mediated autophagy (CMA)-as a PED-interacting protein. We found that PED has two CMA-like motifs (i.e., KFERQ), one of which is located within a phosphorylation site, and demonstrate that PED is a bona fide CMA substrate and the first example in which phosphorylation modifies the ability of HSC70 to access KFERQ-like motifs and target the protein for lysosomal degradation. Phosphorylation of PED switches its function from tumor suppression to tumor promotion, and we show that HSC70 preferentially targets the unphosphorylated form of PED to CMA. Therefore, we propose that the up-regulated CMA activity characteristic of most types of cancer cell enhances oncogenesis by shifting the balance of PED function toward tumor promotion. This mechanism is consistent with the notion of a therapeutic potential for targeting CMA in cancer, as inhibition of this autophagic pathway may help restore a physiological ratio of PED form

    CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro 'patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after ÎČ-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca(2+)/calmodulin-dependent serine-threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies

    The new generation of SPAD—Single-Photon Avalanche Diodes arrays

    Get PDF
    In the last years the single-photon detection with silicon devices has become an important goal. Here we present the performance of a new generation of single-photon avalanche diodes manufactured by ST-Microelectronics. The 5 × 5 array configuration has been also realized and the performances, in terms of crosstalk and common readout mode, have been investigated

    Nandrolone decanoate: Use, abuse and side effects

    Get PDF
    Background and Objectives: Androgens play a significant role in the development of male reproductive organs. The clinical use of synthetic testosterone derivatives, such as nandrolone, is focused on maximizing the anabolic effects and minimizing the androgenic ones. Class II anabolic androgenic steroids (AAS), including nandrolone, are rapidly becoming a widespread group of drugs used both clinically and illicitly. The illicit use of AAS is diffused among adolescent and bodybuilders because of their anabolic proprieties and their capacity to increase tolerance to exercise. This systematic review aims to focus on side effects related to illicit AAS abuse, evaluating the scientific literature in order to underline the most frequent side effects on AAS abusers’ bodies. Materials and Methods: A systematic review of the scientific literature was performed using the PubMed database and the keywords “nandrolone decanoate”. The inclusion criteria for articles or abstracts were English language and the presence of the following words: “abuse” or “adverse effects”. After applying the exclusion and inclusion criteria, from a total of 766 articles, only 148 were considered eligible for the study. Results: The most reported adverse effects (found in more than 5% of the studies) were endocrine effects (18 studies, 42%), such as virilization, gynecomastia, hormonal disorders, dyslipidemia, genital alterations, and infertility; cardiovascular dysfunctions (six studies, 14%) such as vascular damage, coagulation disorders, and arteriosus hypertension; skin disorders (five studies, 12%) such as pricking, acne, and skin spots; psychiatric and mood disorders (four studies, 9%) such as aggressiveness, sleep disorders and anxiety; musculoskeletal disorders (two studies, 5%), excretory disorders (two studies, 5%), and gastrointestinal disorders (two studies, 5%). Conclusions: Based on the result of our study, the most common adverse effects secondary to the abuse of nandrolone decanoate (ND) involve the endocrine, cardiovascular, skin, and psychiatric systems. These data could prove useful to healthcare professionals in both sports and clinical settings

    High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought

    Get PDF
    Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ((Formula presented.)) and the kinetics of electron transport measured by reoxidation rates ((Formula presented.) and (Formula presented.)). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, (Formula presented.) and (Formula presented.) were little affected, while (Formula presented.) was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis
    • 

    corecore