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Abstract

Carbenoxolone (CBX), the succinyl ester of glycyrrhetinic acid, is an inhibitor of gap junctional intercellular communication. We
have tested its possible effects upon two genetic animal models of epilepsy (WAG/Rij rats and lethargic (lh/lh) mice). Systemic

administration of CBX was unable to significantly affect the occurrence of absence seizures in WAG/Rij rats. In particular,
intravenous (5e40 mg/kg) or intraperitoneal (i.p.; 10e80 mg/kg) administration of CBX was unable to significantly modify the
number and duration of spike-wave discharges (SWDs) in WAG/Rij rats, whereas the bilateral microinjection (0.05, 0.1, 0.5 and

1 mg/0.5 ml) of CBX into nucleus reticularis thalami (NRT) and nucleus ventralis posterolateralis (VPL) thalami produced a decrease
in the duration and the number of SWDs. Bilateral microinjection of CBX into nucleus ventroposteromedial (VPM) thalami did
not produce any significant decrease in the number and duration of SWDs. On the contrary, i.p. (5e40 mg/kg) or
intracerebroventricular (0.5, 1, 2 and 4 mg/2 ml) administration of CBX in lh/lh mice induced a marked decrease in the number

and duration of SWDs in a dose-dependent manner. At the doses used no movement disorders, or other behavioural changes, were
recorded in both WAG/Rij rats and lh/lh mice. No effects were observed in both animal models following systemic or focal
administration of glycyrrhizin into the same brain areas where CBX was shown to be effective.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanisms of action of established and new
antiepileptic drugs are complex and include a variety of
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targets. In recent years, much attention has been focused
on the possible modulation of inhibitory amino acids
transmission (e.g. g-aminobutyric acid (GABA)) or
excitatory amino acids, such as glutamate and aspartate.
However, a substantial fraction of clinical cases are still
refractory to current therapies (Loescher, 2002), there-
fore, identification of novel pharmacological targets and
analysis of the mechanism of action of drugs acting on
them is still a priority in epilepsy research. It has been
proposed that neuronal gap junctions can represent
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a potential novel target for anticonvulsant therapy
(Carlen et al., 2000; Perez-Velazquez and Carlen, 2000;
Traub et al., 2001b, 2002; Bennett and Zukin, 2004;
Nemani and Binder, 2005).

Gap junctions are the ultrastructural substrate of
electrical synapses (Bennet, 1997), and connexins are the
proteins that form gap junction channels (Willecke et al.,
2002). A series of reports has demonstrated that in-
hibitory GABAergic interneurones in the cerebral cortex,
hippocampus, thalamus, striatum and cerebellum are
extensively interconnected by electrical synapses (for
a review see Galarreta and Hestrin, 2001). Moreover,
studies on the cellular localization of Cx36, the principal
neuronal connexin in the adult brain (Condorelli et al.,
2000, 2002, 2003; Belluardo et al., 2000; Rash et al.,
2000), have shown its expression in GABAergic inter-
neurones in several brain regions, including some
thalamic nuclei (Belluardo et al., 2000), and analysis of
Cx36 knock-out mice have confirmed its role in in-
terneuronal coupling (Deans et al., 2001; Hormuzdi et al.,
2001; Landisman et al., 2002). Experimental and
theoretical evidence suggests that direct electrotonic
communication between neurones via gap junctions, in
combination with synaptic and ionic mechanisms, might
contribute to the generation or maintenance of seizures
(Carlen et al., 2000; Perez-Velazquez and Carlen, 2000;
Traub et al., 2001a, 2002). Early experimental evidence is
based on the anticonvulsant effects of gap junction
blockers in in vitro seizure models (0-Ca2C: Perez
Velazquez et al., 1994; high KC-low Ca2C: Margineau
and Klitgaard, 2001; 0-Mg2C: Kohling et al., 2001;
Nyikos et al., 2003; 4-aminopyridine: Ross et al., 2000;
Traub et al., 2001b; bicuculline: Li et al., 2001; Samoilova
et al., 2003; GABAB antagonists: Uusisaari et al., 2002;
repetitive tetanization of Schaffer collaterals: Jahromi
et al., 2002). An involvement of electrical coupling was
also shown in vivo for the local administration of
4-aminopyridine in the rat neocortex (Szente
et al., 2002; Gajda et al., 2003) and synchronization
of cat thalamic reticular neurones (Fuentealba
et al., 2004).

Gap junctions are known to play a significant role in
high-frequency network oscillations (Draguhn et al.,
1998; Traub et al., 2001a; Maier et al., 2002) and the
onset and maintenance of epileptiform activity in
a number of brain areas (e.g. adult guinea pig piriform
cortex: de Curtis et al., 1998; rat hippocampus: Traub
et al., 2002; Uusisaari et al., 2002; rat dentate gyrus:
Schweitzer et al., 2000; rat amygdala: Elisevich et al.,
1998). More recently, Liu and Jones (2003) have
described the distribution of Cx36 in mouse thalamus
and a previous report demonstrated that gap junctions
might play a crucial role in thalamic reticular neurones
(Landisman et al., 2002).

In human epilepsies, gap junctions have been linked
to complex partial (Elisevich et al., 1997), intractable
(Lee et al., 1995), mesial temporal lobe (Fonseca et al.,
2002) and other seizure types (Carlen et al., 2000; Li
et al., 2001; Naus et al., 1991; Perez-Velazquez and
Carlen, 2000; Traub et al., 2001a, 2002). These findings
have led to gap junction blockers being proposed as
potential anticonvulsants.

Carbenoxolone is a commonly used gap junction
blocker; it is the succinyl ester of glycyrrhetinic acid,
which is an aglycone saponin derived from the liquorice
root (Davidson et al., 1986; Davidson and Baumgarten,
1998). The exact mechanism of gap junction blockade
by carbenoxolone is not currently known (Davidson and
Baumgarten, 1998; Goldberg et al., 1996; Guan et al.,
1996; Rouach et al., 2003).

Recently, we have shown that carbenoxolone exerts
anticonvulsant effects against audiogenic seizures in
genetically epilepsy prone rats (GEPRs) and DBA/2
mice andpossesses an additive activitywhen administered
in combination with some classical anticonvulsants such
as diazepam, felbamate, gabapentin, phenobarbital and
valproate (Gareri et al., 2004a,b).

In the present study, we evaluated the efficacy of
systemic (intraperitoneal and intravenous) and focal
administration of carbenoxolone in two different genet-
ically prone animal models of epilepsy: the WAG/Rij rat
and the lethargic (lh/lh) mouse models.

WAG/Rij rats present absence seizures and are
included among GAERS (genetic absence epilepsy rats
from Strasbourg) (Seidenbecher and Pape, 2001). It has
been demonstrated that abnormal discharges on EEG
are generalized and that the cortico-thalamic network is
primarily involved (Inoue et al., 1993; Snead, 1995;
Wang and Snead, 2001; Coenen and van Luijtelaar,
2003). Therefore, WAG/Rij rats are an interesting
model of gene-linked absence epilepsy (Crunelli and
Leresche, 1991; Midzianovskaia et al., 2001; Coenen and
van Luijtelaar, 2003). Another useful model for absence
epilepsy is represented by the lh/lh mice (Loscher and
Schmidt, 1988; Hosford et al., 1992, 1995; Hosford and
Wang, 1997): in this case epilepsy is overt without any
sensory stimulation. lh/lh mice present ataxia, 5e8 Hz
spike-wave discharges on cortical EEG, together with
concurrent behavioural episodes such as vibrissae
spasmus and increase in breath frequency. Behavioural
and pharmacological studies have widely validated this
genetic model (Hosford et al., 1995; Hosford and Wang,
1997).

2. Materials and methods

2.1. Animals

In this study, we used two genetic animal models of
absence epilepsy: male WAG/Rij rats and lethargic (lh/
lh) mice. Male WAG/Rij rats (200e260 g), 6e8 months
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of age, were acquired from Harlan Italy (Correzzana,
Milano). Male Wistar rats (Harlan Italy, Correzzana,
Milano) 6e8 months old were used as control for WAG/
Rij rats. Rats were housed three or four per cage
(350!530 mm long!180 mm high) under stable
conditions of humidity (60G5%) and temperature
(21G2 �C) and allowed free access to food and water
until the time of experiments. Lethargic (lh/lh) mice
(B6EiC3Sn a/A-Cacnb4lh) lacking the b4 subunit of
voltage-activated Ca2C channels were originally ob-
tained from Prof. B.S. Meldrum (University of London,
UK) and inbred in the vivarium facilities of the Faculty
of Pharmacy, University of Catanzaro (Italy) under the
same conditions as WAG/Rij rats. Procedures involving
animals and their care were conducted in conformity
with the international and national law and policies
(European Communities Council Directive of 24th
November 1986, 86/609EEC).

2.2. Experimental design

The animals were placed individually into experi-
mental cages and allowed to habituate to the environ-
ment for approximately 1 h; locomotor activity was
contemporarily assessed. Control animals were always
tested on the same day as the respective experimental
groups. Carbenoxolone or glycyrrhizin (the main bio-
active component of liquorice) were administered to
WAG/Rij rats and to lh/lh mice; the administration was
performed intraperitoneally (i.p.), intravenously (i.v.),
or stereotaxically into some predetermined brain areas.
Control animals received equal volumes of vehicle
(DMSOCsaline (1:9) or phosphate buffer solution) at
the respective times before the test.

2.2.1. WAG/Rij rats
Increasing doses of carbenoxolone (CBX) or glycyr-

rhizin were administered i.p. (10e80 mg/kg) or i.v. (5e
40 mg/kg). For i.v. administration, animals were
anaesthetized with chloral hydrate (400 mg/kg i.p.;
Carlo Erba, Milan, Italy) and drugs were injected into
one jugular vein at doses of 5, 10, 20 and 40 mg/kg. A
time course study was also performed up to 6 h.

Another group of rats was implanted with guide
cannulae and received a bilateral microinjection of CBX
or glycyrrhizin into thalamic sites at doses of 0.05, 0.1,
0.5 and 1 mg/0.5 ml. Bilateral guide cannulae were
stereotaxically implanted into the nucleus reticularis
thalami (AZ2.8; LZG3.4; HZ5.8 from bregma), into
the nucleus ventralis posteromedialis thalami (AZ3.3;
LZG2.6; HZ6 from bregma), or into the nucleus
ventralis posterolateralis thalami (AZ2.3; LZG2.8;
HZ6 from bregma), according to the coordinates of
the atlas of Paxinos and Watson (1986). These nuclei
have been demonstrated to be involved in SWDs
pathogenesis (Inoue et al., 1993; Steriade et al., 1993;
Snead, 1995; Coenen and van Luijtelaar, 2003). The
intrathalamic administration was performed in order to
point out whether or not microinjection in these brain
sites might significantly influence number and duration
of EEG features. To this aim, rats were also concom-
itantly implanted with cortical electrodes. Electrodes
were implanted on cerebral cortex surface: two into
frontal region (coordinates AP, 11; L, G2.5), two in
parietal region (coordinates AP, 7; L, G2.5), one
ground electrode into the frontal region and another
referring electrode into the occipital region. After
surgery, animals were allowed at least 1 week for
recovery after implantation.

For the intracerebral administration of drugs, ani-
mals were gently hand-restrained and drug infusions
were made bilaterally using injector cannulae connected
by a polyethylene tube to a 1 ml Hamilton syringe. Drugs
were infused in a volume of 0.5 ml at a rate of 0.2 ml/min,
the cannulae kept in situ for one further minute.
Animals were used only once, and at the end of the
experiments, injection sites were verified by both
macroscopic and histological examination. Each dose
and group of experiments required at least 6 animals.

EEG was recorded in a frequency band between 1
and 30 Hz 1 h before and up to 5 or more hours after
drug or vehicle administration. The quantification of
absence of seizures was based on the number and the
duration(s) of electroencephalogram spike-wave dis-
charges (SWDs), as previously described (De Sarro
et al., 2000; Russo et al., 2004). Exploratory spontane-
ous behaviour was contemporarily and independently
registered by two independent researchers for all EEG
duration according to Coenen and van Luijtelaar (1989).

2.2.2. Lethargic mice
lh/lh mice were chronically implanted with five

electrodes and a guide cannula for i.c.v. administration
under fluothane anaesthesia (according to the atlas of
Paxinos and Franklin, 2001). At least 1 week after
surgery, each mouse underwent five daily electroenceph-
alogram (EEG) recordings. During each 5-h recording
session, mice received i.c.v. either vehicle (0.01 M
sodium phosphate buffer-DMSO) or drug (carbenox-
olone or glycyrrhizin 0.5, 1, 2 or 4 mg/2 ml) per cannula
at 60 min after each baseline recording or intraperito-
neally (i.p.) either vehicle (DMSOCsaline 1:9) or drug
(carbenoxolone or glycyrrhizin 5, 10, 20 or 40 mg/kg, at
least 6 mice per dose). During each recording, the
behavioural changes after drug treatment in comparison
to vehicle were noted. The identification of absence
seizures was based on the duration(s) of electroenceph-
alogram spike-wave discharges (SWDs) or poly-spikes,
as previously described by Hosford et al. (1992) (i.e.
amplitude not less than 60 mV and frequency range of
5e6 Hz; seizures must have a duration no shorter than
0.6 s). The quantification of absence seizures was based
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on the duration of electroencephalogram SWDs, as
previously described (De Sarro et al., 2000; Russo et al.,
2004).

2.3. Expression of Cxs

In situ hybridization and immunohistochemical
procedures were used mainly to examine, respectively
as mRNAs and proteins, the expression levels of Cx30,
Cx36, Cx43, and Cx45 in brain regions where carbenox-
olone was injected: the nucleus reticularis thalami,
nucleus ventralis posterolateralis thalami and nucleus
ventralis posteromedialis thalami. The expression of
these Cxs in WAG/Rij rats was compared with that of
male Wistar rats 6 months old. Rats were killed by
decapitation under deep anaesthesia, brains were rapidly
frozen and serial coronal cryostat sections of 14 mm were
prepared and processed for the in situ hybridization and
immunohistochemical analysis.

2.3.1. In situ hybridization
To obtain anti-sense and sense cRNA probes for

connexin mRNA in situ hybridization study a specific
sequence for each Cx examined was used as reported in
previous works (Condorelli et al., 2002, 2003). Tissue
sections were processed for the in situ hybridization as
previously described in Condorelli et al. (2003). Follow-
ing fixation in 4% paraformaldehyde for 15 min, slides
were rinsed twice in PBS and once in distilled water.
Tissue was deproteinated in 0.2 M HCl for 10 min,
acetylated with 0.25% acetic anhydride in 0.1 M
ethanolamine for 20 min and dehydrated with increasing
concentrations of ethanol. Slides were incubated for 16 h
in a humidified chamber at 52 �C with 8!105 cpm of
probe in 70 ml of hybridization cocktail (50% formamide,
20 mM TriseHCl (pH 7.6), 1 mM EDTA pH 8.0, 0.3 M
NaCl, 0.1Mdithiothreitol, 0.5 mg/ml yeast tRNA, 0.1 mg/
ml poly-A-RNA, 1! Denhardt’s solution and 10%
dextran sulphate). Slides were washed twice in 1! SSC at
62 �C for 15 min, and then in formamide: SSC (1:1) at
62 �C for 30 min. After an additional washing in 1! SSC
at 62 �C, single-stranded RNA was digested by RNase
treatment (10 mg/ml) for 30 min at 37 �C in 0.5 M NaCl,
20 mM TriseHCl pH 7.5, 2 mM EDTA. Slides were
washed twice with 1! SSC at 62 �C for 30 min before
dehydration in ethanol and air drying. For tissue
localization of Cx mRNAs hybridized sections were
exposed for 3 weeks to beta-Max Hyperfilm (Amersham)
and subsequently coated with NTB-2 photoemulsion
diluted 1:1 in water (Eastman-Kodak Co., Rochester,
NY), stored in desiccated light-tight boxes at 4 �C for 4
weeks. Slides were developed with D19 (Eastman-Kodak
Co.), fixed with Al-4 (Agfa Gevaert, Kista, Sweden) and
counterstained with Cresyl Violet. Control of the
hybridization specificity of the cRNA riboprobes was
performed using sense 35S-labelled riboprobes. In order
to evaluate the mRNA levels of Cx30, Cx36, Cx43 and
Cx45 a semiquantitative analysis was performed by
measuring the optical density value of the area of interest
(Rt, VPL and VPM) in the film autoradiograms on
a personal computer using the PC version of the NIH
IMAGE program (http://rsb.info.nih.gov./nih.image).

2.3.2. Immunohistochemistry
Cryostat sections of 14 mm thickness were fixed for

3 min in cold (�20 �C) acetone, air-dried for 15 min,
rinsed with PBS containing 0.5% BSA and incubated
for 2 h at room temperature (RT) with the following
antibodies: (a) rabbit polyclonal Cx30 antibody diluted
1:50 (Zymed laboratory Inc., CA, USA); (b) rabbit
polyclonal Cx36 antibody (Zymed laboratory Inc., CA,
USA) diluted 1:200; (c) mouse monoclonal Cx43
antibody diluted 1:50 (Chemicon Int. Temecula CA,
USA); (d) rabbit polyclonal Cx45 diluted 1:200 (Chem-
icon Int. Temecula CA, USA). After two washings with
PBS, the sections were incubated at RT for 1 h with
appropriate rhodamine-tagged secondary antibodies,
diluted 1:200. After two washing in PBS, sections were
cover-slipped and examined under a fluorescence mi-
croscope (Leica, DMRBE).

The evaluation of Cx protein levels was obtained by
counting the puncta in the area of interest by mean of
the analysis of particles module of the NIH IMAGE
software.

2.4. Effects on motor movements

WAG/Rij rats were trained just before systemic
antiepileptic testing, to do coordinate motor movements
continuously for 5 min on a rotarod 6 cm in diameter,
4.5 rpm (U. Basile, Comerio, Varese, Italy). Impairment
of coordinated motor movements was defined as the
inability of the animals to remain on the rotarod for
a test period of 5 min, according to Dunham and Mija
(1957). The locomotor performance of WAG/Rij rats
was usually assessed at 60 min after i.p. drug adminis-
tration. Behavioural changes and their onset and
duration were recorded after drug injection until the
time of the rotarod test. In particular, two independent
observers followed gross behavioural changes consisting
of locomotor activity, ataxia, squatting posture and
possible piloerection. These behavioural changes were
noted but not statistically analysed.

2.5. Statistical analysis

The behavioural response was recorded for each
animal. Statistical analysis of EEG changes in WAG/Rij
and in lethargic (lh/lh) mice was performed through one-
way variance analysis (ANOVA) (both for dose and
time) followed by multiple comparison by Bonferroni
when it was possible. All tests used were two-sided and

http://rsb.info.nih.gov./nih.image
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P!0.05 was considered significant. TD50 values (G95%
confidence limits) for each compound were estimated
using the method of Litchfield and Wilcoxon (1949).

2.6. Drugs

Carbenoxolone, the succinyl ester of 18-b-glycyrrhe-
tinic acid (disodium salt, MWZ614.7, water soluble),
and glycyrrhizin, the glycoside derivative of 18-b-glycyr-
rhetinic acid (MWZ840), were purchased from Sigma
(St. Louis, MO, USA) and dissolved in DMSOCsaline
(1:9) for i.p. or i.v. administration and in DMSOC
phosphate buffer (1:9) for intracerebral microinjection.

3. Results

3.1. WAG/Rij rats

The effects of carbenoxolone on absence seizures in
WAG/Rij rat have been studied following both i.p. and
i.v. injection. Furthermore, in order to test the efficacy
of focal administration of CBX into known anatomical
substrates of absence seizures, stereotaxic microinjec-
tions into the nucleus reticularis thalami, ventralis
posterolateralis thalami and ventralis posteromedialis
thalami were also performed.

3.1.1. Effects of intraperitoneal (i.p.) and intravenous
(i.v.) administration of carbenoxolone or glycyrrhizin
in WAG/Rij rats

Intraperitoneal administration of carbenoxolone (10,
20 and 40 mg/kg) was unable to produce significant
changes in the number and duration of SWDs in WAG/
Rij rats.

Even the highest dose tested (80 mg/kg i.p.), superior
to that administered in previous work in GEPRs (Gareri
et al., 2004b), was unable to produce significant changes
in the number and duration of SWDs, although a mild
non-significant decrease in the number and duration of
SWDs was registered (Fig. 1A,B). Similarly, intravenous
administration of carbenoxolone at the doses of 5, 10,
20 and 40 mg/kg was unable to significantly affect the
number and the duration of SWDs (data not shown).
The weak antiabsence effects of carbenoxolone reached
a peak between the 2nd (i.v.) or the 3rd (i.p.) hour after
injection and disappeared after 6 h.

Glycyrrhizin, a natural analogue of carbenoxolone
which is inactive as a gap junction blocker (Davidson
et al., 1986), did not affect the number and duration of
absence seizures (up to 80 mg/kg by i.p. administration
or 40 mg/kg by i.v. injection).
3.1.2. Effects of bilateral microinjection of
carbenoxolone or glycyrrhizin into
nucleus reticularis thalami

Bilateral microinjection of carbenoxolone (0.5 and
1 mg/0.5 ml) into nucleus reticularis thalami (NRT)
produced a significant decrease in the number and
duration of SWDs (Fig. 2A,B). Maximal response was
recorded 90e150 min after drug microinjection. Lower
doses (0.05 mg and 0.1 mg/0.5 ml) did not significantly
affect the number and duration of SWDs.

Bilateral microinjection of glycyrrhizin (0.05, 0.10,
0.50 and 1 mg/0.5 ml) into the NRT did not produce
a reduction in the number or the duration of SWDs in
the dose range examined (data not shown).

3.1.3. Effects of bilateral microinjections of
carbenoxolone or glycyrrhizin into
ventroposterolateral thalamic nuclei

Bilateral microinjection of carbenoxolone (0.5 and
1 mg/0.5 ml) into ventroposterolateral thalamic nuclei
(VPL) produced a significant dose-dependent reduction
in the duration and the number of SWDs (Fig. 3A,B).
Maximal response was recorded 90 min after drug
administration. Lower doses (0.05 mg and 0.1 mg/0.5 ml)
did not significantly influence the number and duration
of spike-waves epileptic discharges.

Bilateral microinjection of glycyrrhizin into VPL did
not produce a reduction in the number or the duration
of SWDs (data not shown).
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Fig. 2. Effects of the focal administration in the NRT of various doses

of CBX on the number (A) and duration (B) of SWDs in WAG/Rij

rats.
3.1.4. Effects of bilateral microinjections of
carbenoxolone or glycyrrhizin into nucleus
ventralis posteromedialis thalami

Bilateral microinjection of carbenoxolone or glycyr-
rhizin (0.05, 0.1, 0.50 and 1 mg/0.5 ml) into nucleus
ventralis posteromedialis thalami (VPM) did not pro-
duce any significant decrease in the duration and the
number of SWDs (Fig. 4A,B).

3.2. Comparative analysis of connexin expression in
the WAG/Rij and Wistar rat brain

Among Cxs found in the brain, the main connexins
expressed in the rat thalamus include Cx30, Cx36, Cx43
and Cx45. The present analysis was undertaken to test
the hypothesis that a permanent alteration of one or
more of these Cxs in the WAG/Rij rats, as compared
to Wistar rats, could be one of the factors responsible
for the increased susceptibility towards absence epilepsy
in the WAG/Rij rats. Therefore we examined the
expression of these Cxs in some thalamic nuclei
(reticularis thalami, ventroposterolateral and ventropos-
teromedial thalamic nuclei) that have been involved in
SWDs pathogenesis (Inoue et al., 1993; Steriade et al.,
1993; Snead, 1995; Coenen and van Luijtelaar, 2003) and
where carbenoxolone has been stereotaxically injected.

In the thalamus Cx36, the principal neuronal connex-
ins, was detected at high levels in the nucleus reticularis
thalami (Belluardo et al., 2000), and a comparative
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Fig. 4. Effects of the focal administration in the VPM of various doses

of CBX on the number (A) and duration (B) of SWDs in WAG/Rij

rats.
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analysis betweenWistar andWAG/Rij rats did not reveal
differences at both mRNA and protein level. The
neuronal and glial Cx45 (Condorelli et al., 2003) was
expressed in all the thalamic nuclei but its expression was
unchanged in the WAG/Rij rats as compared to control
Wistar rats (Fig. 5). Cx30 and Cx43, two astroglial
connexins (Condorelli et al., 2002, 2003), were expressed
in all the thalamic nuclei examined. A slight reduction of
Cx30 levels was detected inWAG/Rij rats as compared to
Wistar rats (Fig. 6).

Taken together the results of both in situ hybridiza-
tion and protein level analysis revealed no significant
modification in Cx expression between WAG/Rij and
Wistar rats in the thalamic nuclei examined.
Fig. 5. Immunolabelling of Cx30, Cx36, in the nucleus reticularis thalami (NRT) and Cx43 and Cx45 in the nucleus ventralis posterolateralis (VPL)

of rat control (Wistar) and WAG/Rij. Note the immunolabelling levels of different connexins examined in the wag/RiJ are similar to the control.

Arrows indicate immunofluorescent puncta. Scale bar: 100 mm.
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Fig. 6. Autoradiograms showing Cx30, Cx36, Cx43 and Cx45 mRNA expression in the brain of control (Wistar) and WAG/Rij rats. Representative

views of coronal brain sections made at the dorsal hippocampal level. Am, amygdala; CTX, cerebral cortex; Hipp, hippocampus; Hyp,

hypothalamus; NRT, nucleus reticularis thalami; VPL, nucleus ventralis posterolateralis thalamus; CA1, pyramidal layer of hippocampus. Scale bar,

500 mm.
3.3. Lethargic mice (lh/lh)

3.3.1. Effects of intraperitoneal (i.p.) administration of
carbenoxolone or glycyrrhizin to lethargic mice

Intraperitoneal administration of CBX (10, 20 and
40mg/kg) induced a significant dose-dependent reduction
in the number and duration of epileptic discharges with
a maximum effect observed around 120 min after CBX
administration (Fig. 6A,B); the lowest dose (5 mg/kg) did
not cause any significant changes of the typical spike-
wave complexes of lethargic mouse EEG (Fig. 7A,B).
At the effective anti-epileptic doses (10, 20 or 40 mg/kg)
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no movement disorders or other behavioural changes
were recorded.

Glycyrrhizin, given i.p. at 10, 20, 40 and 80 mg/kg
was unable to produce any significant changes in the
number and duration of the typical spike-waves of
lethargic mice (data not shown).

3.3.2. Effects of intracerebroventricular microinjection
of carbenoxolone or glycyrrhizin to lethargic mice

Intracerebroventricular injection of CBX (0.5, 1, 2 or
4 mg/2 ml) determined a dose-dependent and significant
reduction in the number and duration of SWDs and did
not affect motor coordination (Fig. 8A,B). Intracere-
broventricular injection of glycyrrhizin (0.5, 1, 2 or 4 mg/
2 ml) did not determine significant changes in baseline
EEG recording (data not shown).

3.4. Locomotor activity

3.4.1. Influence of carbenoxolone or glycyrrhizin on
locomotor activity of WAG/Rij rats

Carbenoxolone and glycyrrhizin, at the doses admin-
istered for evaluating antiabsence effects (up to 80 mg/
kg), did not affect motor coordination in the rotarod
test. However, doses of carbenoxolone higher than those
used in the present study produced a transient ataxia in
WAG/Rij rats. In particular, after the i.p. administra-
tion of a high dose of carbenoxolone (300 mg/kg), an
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Fig. 7. Effects of the intraperitoneal administration of CBX on the

number (A) and duration (B) of SWDs in lh/lh mice.
impairment of locomotor performance was observed in
WAG/Rij rats from 0.5 to 6 h (data not shown).

4. Discussion

4.1. Carbenoxolone anti-absence effects in lethargic
mice and WAG/Rij rats

We have recently demonstrated that carbenoxolone
possesses anticonvulsant effects, in vivo, in audiogenic
seizure-susceptible DBA/2 mice and in genetically
epilepsy-prone rats (Gareri et al., 2004a,b). Data
reported here show that other genetic models of epilepsy
are sensitive to the antiepileptic effects of carbenoxolone.

Lethargic mouse is a useful model for the study of
absences in man (Hosford et al., 1992, 1995, 1999;
Hosford and Wang, 1997). This model has shown a high
predictable value in predicting the anti-absence clinical
efficacy of several antiepileptic drugs (Hosford et al.,
1992, 1995, 1999; Russo et al., 2004). Therefore, the
present demonstration of a dose-dependent decrease in
the occurrence of absence epilepsy following i.p. and
i.c.v. administration of carbenoxolone in lethargic mice
may have important implications for human therapy.

WAG/Rij rats present absence seizures and are
included among GAERS (genetic absence epilepsy rats
from Strasbourg) (Midzianovskaia et al., 2001;
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Seidenbecher and Pape, 2001). Electrophysiologic stud-
ies indicated that abnormal discharges on EEG are
generalized and the hippocampus is not primarily
involved; thalamic nuclei, together with reticular tha-
lamic nucleus apparently act as pacemaker for these
abnormal discharges.

In WAG/Rij rats, systemic administration of carbe-
noxolone did not exert any significant antiabsence
effects, whereas its focal administration into the reticular
or into the ventroposterolateral thalamic nuclei caused
a decrease in the number and the duration of spike-
waves discharges. The results obtained following in-
tracerebral stereotaxic injections suggest that some
anatomical substrates of absence seizures are also
targets for carbenoxolone action. The NRT is known
as a critical structure in absence seizures and bilateral
lesion of this area abolishes absence seizures perma-
nently (Avanzini et al., 1993). Focal microinjection of
GABAA agonists and GABAB antagonists and lesion
experiments have also implicated the thalamic nuclei in
the modulation of absences (Crunelli and Leresche,
1991). Accordingly, focal bilateral administration of
carbenoxolone into the NRT or VPL clearly demon-
strated that a direct action at these brain sites exerts
a potent antiabsence effect. Indeed, typical brain
connexin, such as Cx43, Cx30 and Cx45 are expressed
in all thalamic nuclei examined, whereas the neuronal
Cx36 is expressed only in the nucleus reticularis thalami
(present work; Belluardo et al., 2000; Condorelli et al.,
2003), where it plays an important role in the regula-
tion of neural firing patterns (Landisman et al., 2002;
Fuentealba et al., 2004). Moreover, increased expression
of brain connexins (such as Cx43 and Cx30) have been
observed in experimental epilepsy models in vitro and in
vivo and in human epileptic brain tissue (Li et al., 2001;
Condorelli et al., 2002, 2003; Szente et al., 2002; Gajda
et al., 2003; Naus et al., 1991; Sohl et al., 2000; Aronica
et al., 2001; Fonseca et al., 2002). We could not detect
any significant difference in the expression of these
connexins (Cx43, Cx30, Cx45, Cx36) in the brain of
WAG/Rij in comparison to control Wistar rats, thus
excluding that an abnormal expression of the main
astroglial and neuronal connexins in the thalamic nuclei
might contribute to the absence seizure susceptibility
phenotype in these animals. Moreover, we have no
direct proof that connexins are the real target of
carbenoxolone action. Indeed, members of a novel
family of gap junction proteins, called pannexins, are
expressed at high levels in the rodent brain and channels
formed by pannexins are sensitive to carbenoxolone
(Bruzzone et al., 2003).

Rouach et al. (2003) suggested that the carbenox-
olone blockade of spontaneous neuronal network
activity in hippocampal or cortical neuronal cultures is
not mediated by an action on gap junctions, but may
instead be mediated by direct effects on neurones.
Although previous reports have not described significant
effects of carbenoxolone on intrinsic neuronal properties
(Draguhn et al., 1998; Kohling et al., 2001; Schmitz
et al., 2001; Yang and Michelson, 2001), recent evidence
suggests a more complex action of this compound on
neuronal excitability (Rouach et al., 2003). Carbenox-
olone is known to have other pharmacological actions,
such as inhibition of 11-b-hydroxysteroid dehydroge-
nase and mineralocorticoid agonist effects (Jellinck
et al., 1993). However, these effects do not seem to be
linked to the anticonvulsant action. Ross et al. (2000)
reported that the mineralocorticoid antagonist spirono-
lactone was unable to block the ability of carbenoxolone
to depress spontaneous epileptiform activity in hippo-
campal brain slices.

4.2. Effective doses of carbenoxolone

In the present work and in a previous work on
audiogenic seizures in DBA/2 mice and GEPRs (Gareri
et al., 2004a,b) we found that the anticonvulsant effects
of systemic administration of carbenoxolone were
significant at doses of 5e40 mg/kg. It is interesting that
systemic administration of carbenoxolone at similar
doses (7e35 mg/kg) has been reported to affect specific
CNS functions in rats (blockade of apomorphine-
induced striatal stereotypes in rats; Moore and Grace,
2002). In contrast, the ED50 of i.p. carbenoxolone was
280 mg/kg in the pentylenetetrazole epileptic model and
doses as high as 400 mg/kg were necessary to observe
significant effects in the maximal electroshock model
(Hosseinzadeh and Nassiri Asl, 2003). However, at high
doses, sedative and muscle relaxant effects and a decline
of motor coordination were also observed, suggesting
that more non-specific effects on CNS function were
taking place (Hosseinzadeh and Nassiri Asl, 2003). In
the present study, we did not observe any effect of
carbenoxolone on motor coordination at doses that
already exert a maximal anticonvulsant effect on
absence seizures in lethargic mice, while we confirmed
the ataxia-inducing effect of higher doses. Therefore,
our results suggest that the anticonvulsant action of
carbenoxolone is more evident or specific for audiogenic
seizures (Gareri et al., 2004a,b) and absence epilepsy
(present work) in comparison to other forms of
generalized epilepsy.
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