14,628 research outputs found

    Exact solution of lossy asymmetrical coupled dielectric slab waveguides

    Get PDF
    This paper gives an exact characteristic equation for asymmetrical coupled dielectric slab waveguides with losses in both the guiding and surrounding regions. For the lossless case the solution of a single transcendental equation is all that is required for the evaluation of the propagation constant

    450 GEV

    Get PDF

    A new substrate for sampling deep river macroinvertebrates

    Get PDF
    We compared macroinvertebrate communities colonising multiplate samplers constructed from perspex or tempered hardboard (wood) with an alternative artificial substrate constructed from folded coconut fibre matting (coir) enclosed in nylon netting. Substrates were incubated for 62 days over January to March 2007 at six sites over 240 km along the Waikato River. The three substrates supported similar numbers of invertebrate taxa (27 - 29 taxa), but coir samples contained 71% of total invertebrate numbers from all substrates combined, compared with <17% for each type of multiplate sampler. Coir faunas were heavily dominated by the hydrobiid snail Potamopyrgus (84 % of numbers), and this taxon along with the amphipod Paracalliope comprised 58 - 66 % of invertebrates on both types of multiplate samplers. Analysis of a Bray-Curtis matrix suggested statistically significant differences in percent community composition between coir samplers and each type of multiplate sampler over the late summer study period. Densities per cm3 of Oligochaeta, Mollusca, and "other worms" (Platyhelminthes, Rhabdocoela, Nemertea and Hirudinea combined) were significantly higher in coir samples than one or both of the multiplate samplers. Results suggest coir samplers may provide a useful supplement to multiplate samplers for deep river invertebrate studies by collecting a different range of taxa, including those favouring cover and characteristic of depositional environments

    UV Spectroscopy of AB Doradus with the Hubble Space Telescope. Impulsive flares and bimodal profiles of the CIV 1549 line in a young star

    Get PDF
    We observed AB Doradus, a young and active late type star (K0 - K2 IV-V, P= 0.514 d) with the Goddard High Resolution Spectrograph of the post-COSTAR Hubble Space Telescope with the time and spectral resolutions of 27 s and 15 km, respectively. The wavelength band (1531 - 1565 A) included the strong CIV doublet (1548.202 and 1550.774, formed in the transition region at 100 000 K). The mean quiescent CIV flux state was close to the saturated value and 100 times the solar one. The line profile (after removing the rotational and instrumental profiles) is bimodal consisting of two Gaussians, narrow (FWHM = 70 km/s) and broad (FWHM =330km/s). This bimodality is probably due to two separate broadening mechanisms and velocity fields at the coronal base. It is possible that TR transient events (random multiple velocities), with a large surface coverage, give rise to the broadening of the narrow component,while true microflaring is responsible for the broad one. The transition region was observed to flare frequently on different time scales and magnitudes. The largest impulsive flare seen in the CIV 1549 emission reached in less than one minute the peak differential emission measure (10**51.2 cm-3) and returned exponentially in 5 minutes to the 7 times lower quiescent level.The 3 min average line profile of the flare was blue-shifted (-190 km/s) and broadened (FWHM = 800 km/s). This impulsive flare could have been due to a chromospheric heating and subsequent evaporation by an electron beam, accelerated (by reconnection) at the apex of a coronal loop.Comment: to be published in AJ (April 98), 3 tables and 7 figures as separate PS-files, print Table 2 as a landscap

    Bistable molecular conductors with a field-switchable dipole group

    Full text link
    A class of bistable "stator-rotor" molecules is proposed, where a stationary bridge (stator) connects the two electrodes and facilitates electron transport between them. The rotor part, which has a large dipole moment, is attached to an atom of the stator via a single sigma bond. Hydrogen bonds formed between the rotor and stator make the symmetric orientation of the dipole unstable. The rotor has two potential minima with equal energy for rotation about the sigma bond. The dipole orientation, which determines the conduction state of the molecule, can be switched by an external electric field that changes the relative energy of the two potential minima. Both orientation of the rotor correspond to asymmetric current-voltage characteristics that are the reverse of each other, so they are distinguishable electrically. Such bistable stator-rotor molecules could potentially be used as parts of molecular electronic devices.Comment: 8 pages, 7 figure

    Objects Capable of Touching the Beams

    Get PDF

    Temporal fluctuations in the differential rotation of cool active stars

    Full text link
    This paper reports positive detections of surface differential rotation on two rapidly rotating cool stars at several epochs, by using stellar surface features (both cool spots and magnetic regions) as tracers of the large scale latitudinal shear that distorts the convective envelope in this type of stars. We also report definite evidence that this differential rotation is different when estimated from cool spots or magnetic regions, and that it undergoes temporal fluctuations of potentially large amplitude on a time scale of a few years. We consider these results as further evidence that the dynamo processes operating in these stars are distributed throughout the convective zone rather than being confined at its base as in the Sun. By comparing our observations with two very simple models of the differential rotation within the convective zone, we obtain evidence that the internal rotation velocity field of the stars we investigated is not like that of the Sun, and may resemble that we expect for rapid rotators. We speculate that the changes in differential rotation result from the dynamo processes (and from the underlying magnetic cycle) that periodically converts magnetic energy into kinetic energy and vice versa. We emphasise that the technique outlined in this paper corresponds to the first practical method for investigating the large scale rotation velocity field within convective zones of cool active stars, and offers several advantages over asteroseismology for this particular purpose and this specific stellar class.Comment: 14 pages, 4 figure
    corecore