This paper reports positive detections of surface differential rotation on
two rapidly rotating cool stars at several epochs, by using stellar surface
features (both cool spots and magnetic regions) as tracers of the large scale
latitudinal shear that distorts the convective envelope in this type of stars.
We also report definite evidence that this differential rotation is different
when estimated from cool spots or magnetic regions, and that it undergoes
temporal fluctuations of potentially large amplitude on a time scale of a few
years. We consider these results as further evidence that the dynamo processes
operating in these stars are distributed throughout the convective zone rather
than being confined at its base as in the Sun. By comparing our observations
with two very simple models of the differential rotation within the convective
zone, we obtain evidence that the internal rotation velocity field of the stars
we investigated is not like that of the Sun, and may resemble that we expect
for rapid rotators. We speculate that the changes in differential rotation
result from the dynamo processes (and from the underlying magnetic cycle) that
periodically converts magnetic energy into kinetic energy and vice versa. We
emphasise that the technique outlined in this paper corresponds to the first
practical method for investigating the large scale rotation velocity field
within convective zones of cool active stars, and offers several advantages
over asteroseismology for this particular purpose and this specific stellar
class.Comment: 14 pages, 4 figure