4,558 research outputs found
Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography
The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well
Mapping isoprene emissions over North America using formaldehyde column observations from space
We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)
Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components
The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data
Recommended from our members
Arizona’s Rising STEM Occupational Demands and Declining Participation in the Scientific Workforce: An Examination of Attitudes among African Americans toward STEM College Majors and Careers
According to the Bureau of Labor Statistics (2008), science, technology, engineering, and math (STEM) occupations constitute a growing sector of Arizona’s economy. However, the number of African Americans earning degrees related to these occupations has not kept pace with this growth. Increasing the participation of African Americans in STEM education fields and subsequent related occupations in Arizona is vital to growing and maintaining the state’s economic stature. This objective is made even more compelling given that each year, from 2008– 2018, there are 3,671 projected job openings in STEM fields in Arizona. This study explores the extent to which the attitudes held by African Americans in Arizona toward STEM related majors and careers influence their likelihood of joining the state’s scientific workforce. Our analyses reveal the importance of career consideration, confidence in one’s ability to be successful in a STEM related field, and family support of the pursuit of STEM education and careers.Educatio
Dissipative Tunneling in 2 DEG: Effect of Magnetic Field, Impurity and Temperature
We have studied the transport process in the two dimensional electron gas
(2DEG) in presence of a magnetic field and a dissipative environment at
temperature T. By means of imaginary time series functional integral method we
calculate the decay rates at finite temperature and in the presence of
dissipation. We have studied decay rates for wide range of temperatures -- from
the thermally activated region to very low temperature region where the system
decays by quantum tunneling. We have shown that dissipation and impurity helps
the tunneling. We have also shown that tunneling is strongly affected by the
magnetic field. We have demonstrated analytical results for all the cases
mentioned above.Comment: 8 pages, 2 figure
Improved ozone profile retrievals from GOME data with degradation correction in reflectance
We present a simple method to perform degradation correction to Global Ozone Monitoring Experiment (GOME) reflectance spectra by comparing the average reflectance for 60° N–60° S with that at the beginning of GOME observations (July–December 1995) after removing the dependences on solar zenith angle and seasonal variation. The results indicate positive biases of up to ~15–25% in the wavelength range 289–370 nm during 2000–2002; the degradation also exhibits significant dependence on wavelength and viewing zenith angle. These results are consistent with previous studies using radiative transfer models and ozone observations. The degradation causes retrieval biases of up to ~3% (10 DU, 1 DU=2.69×10<sup>16</sup> molecules cm<sup>−2</sup>), 30% (10 DU), 10%, and 40% in total column ozone, tropospheric column ozone, stratospheric ozone and tropospheric ozone, respectively, from our GOME ozone profile retrieval algorithm. In addition, retrieval biases due to degradation vary significantly with latitude. The application of this degradation correction improves the retrievals relative to Dobson and ozonesonde measurements at Hohenpeißenberg station during 2000–2003 and improves the spatiotemporal consistency of retrieval quality during 1996–2003. However, because this method assumes that the deseasonalized globally-averaged reflectance does not change much with time, retrievals with this correction may be inadequate for trend analysis. In addition, it does not correct for instrument biases that have occurred since launch
Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument
Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere
stems from biogenic and human activities, and their estimation is difficult
because of the many and not fully understood processes involved. In order to
narrow down the uncertainty related to VOC emissions, which negatively
reflects on our ability to simulate the atmospheric composition, we exploit
satellite observations of formaldehyde (HCHO), an ubiquitous oxidation
product of most VOCs, focusing on Europe. HCHO column observations from the
Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a
summer maximum and winter minimum. In summer, the oxidation of methane and
other long-lived VOCs supply a slowly varying background HCHO column, while
HCHO variability is dominated by most reactive VOC, primarily biogenic
isoprene followed in importance by biogenic terpenes and anthropogenic VOCs.
The chemistry-transport model CHIMERE qualitatively reproduces the temporal
and spatial features of the observed HCHO column, but display regional
biases which are attributed mainly to incorrect biogenic VOC emissions,
calculated with the Model of Emissions of Gases and Aerosol from Nature
(MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected
through a
Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or
a-posteriori isoprene emissions are lower than "bottom-up" by 40% over
the Balkans
and by 20% over Southern Germany, and higher by 20% over Iberian
Peninsula, Greece and Italy.
We conclude that OMI
satellite observations of HCHO can provide a quantitative "top-down"
constraint on the European "bottom-up" VOC inventories
Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment
Abstract. We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitudedependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40 % less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be • 10%. The GEOS-CHEM model captures 50 % and 60 % of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias. 1
First observations of iodine oxide from space
We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 × 10^(13) molecules cm^(−2) are observed around coastal Antarctica; by contrast during that time in the Artic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2–4 × 10^(12) molecules cm^(−2) for slant columns). The levels reported here are in reasonably good agreement with previous ground‐based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea‐ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica
- …
