35 research outputs found

    The nature of singlet exciton fission in carotenoid aggregates.

    Get PDF
    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/ 1), the European Community (LASERLAB-EUROPE, grant agreement no. 284464, EC’s Seventh Framework Programme; and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177), and the Winton Programme for the Physics of Sustainability. G.C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). J.C. acknowledges support by the Royal Society Dorothy Hodgkin Fellowship and The University of Sheffield’s Vice- Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130

    Making iron glow

    No full text

    Fast Monolayer Adsorption and Slow Energy Transfer in CdSe Quantum Dot Sensitized ZnO Nanowires

    No full text
    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of similar to 4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns

    Femtosecond Carotenoid to Retinal Energy Transfer in Xanthorhodopsin

    No full text
    Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH4-treated xanthorhodopsin. The NaBH4 treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S1 lifetimes of salinixanthin in untreated and NaBH4-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S1-mediated energy transfer. The kinetics of salinixanthin S2 decay probed in the near-infrared region demonstrated a change of the S2 lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH4-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S∗ state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S∗ state generates a triplet state

    Orbital Topology Controlling Charge Injection in Quantum-Dot-Sensitized Solar Cells

    No full text
    Quantum-dot-sensitized solar cells are emerging as a promising development of dye-sensitized solar cells, where photostable semiconductor quantum dots replace molecular dyes. Upon photoexcitation of a quantum dot, an electron is transferred to a high-band-gap metal oxide. Swift electron transfer is crucial to ensure a high overall efficiency of the solar cell. Using femtosecond time-resolved spectroscopy, we find the rate of electron transfer to be surprisingly sensitive to the chemical structure of the linker molecules that attach the quantum dots to the metal oxide. A rectangular barrier model is unable to capture the observed variation. Applying bridge-mediated electron-transfer theory, we find that the electron-transfer rates depend on the topology of the frontier orbital of the molecular linker. This promises the capability of fine tuning the electron-transfer rates by rational design of the linker molecules
    corecore