280 research outputs found
Solid state convection models of lunar internal temperature
Thermal models of the Moon were made which include cooling by subsolidus creep and consideration of the creep behavior of geologic material. Measurements from the Apollo program on seismic velocities, electrical conductivity of the Moon's interior, and heat flux at two locations were used in the calculations. Estimates of 1500 to 1600 K were calculated for the temperature, and one sextillion to ten sextillion sq cm/sec were calcualted for the viscosity of the deep lunar interior
The Survival Rate of Ejected Terrestrial Planets with Moons
During planet formation, a gas giant will interact with smaller protoplanets
that stray within its sphere of gravitational influence. We investigate the
outcome of interactions between gas giants and terrestrial-sized protoplanets
with lunar-sized companions. An interaction between a giant planet and a
protoplanet binary may have one of several consequences, including the delivery
of volatiles to the inner system, the capture of retrograde moons by the giant
planet, and the ejection of one or both of the protoplanets. We show that an
interesting fraction of terrestrial-sized planets with lunar sized companions
will likely be ejected into interstellar space with the companion bound to the
planet. The companion provides an additional source of heating for the planet
from tidal dissipation of orbital and spin angular momentum. This heat flux
typically is larger than the current radiogenic heating of the Earth for up to
the first few hundred million years of evolution. In combination with an
atmosphere of sufficient thickness and composition, the heating can provide the
conditions necesary for liquid water to persist on the surface of the
terrestrial mass planet, making it a potential site for life. We also determine
the possibility for directly detecting such systems through all-sky infrared
surveys or microlensing surveys. Microlensing surveys in particular will
directly measure the frequency of this phenomenon.Comment: 4 pages, 2 figures, Accepted to ApJ
Studies of heat source driven natural convection
Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes
Protostellar disks and the primitive solar nebula
The objective is to obtain quantitative information on the turbulent transport of mass, angular momentum, and energy under the conditions that characterize the solar nebula, by direct numerical calculations. These calculations were made possible by research conducted on supercomputers (Cray XMP and Cray 2) by the Ames Computational Fluid Dynamics Branch. Techniques were developed that permitted the accurate representation of turbulent flows over the full range of important eddy sizes. So far, these techniques were applied (and verified) primarily in mundane laboratory situations, but they have a strong potential for astrophysical applications. A sequence of numerical experiments were conducted to evaluate the Reynold's stress tensor, turbulent heat transfer rate, turbulent dissipation rate, and turbulent kinetic energy spectrum, as functions of position, for conditions relevant to the solar nebula. Emphasis is placed on the variation of these properties with appropriate nondimensional quantities, so that relations can be derived that will be useful for disk modeling under a variety of hypotheses and initial conditions
Structure and phase boundaries of compressed liquid hydrogen
We have mapped the molecular-atomic transition in liquid hydrogen using first
principles molecular dynamics. We predict that a molecular phase with
short-range orientational order exists at pressures above 100 GPa. The presence
of this ordering and the structure emerging near the dissociation transition
provide an explanation for the sharpness of the molecular-atomic crossover and
the concurrent pressure drop at high pressures. Our findings have non-trivial
implications for simulations of hydrogen; previous equation of state data for
the molecular liquid may require revision. Arguments for the possibility of a
order liquid-liquid transition are discussed
The viscosity of Miranda
Voyager 2 images of Miranda revealed a significant history of geological activity. Overlying an apparently ancient cratered terrain are assemblages of concentric ridges, scarps, and dark banded material. The problems that evolutionary thermal and structural modes of Miranda must face, to provide a convincing explanation for such topographic complexity, are examined
Nonlinear Outcome of Gravitational Instability in Disks with Realistic Cooling
We consider the nonlinear outcome of gravitational instability in optically
thick disks with a realistic cooling function. We use a numerical model that is
local, razor-thin, and unmagnetized. External illumination is ignored. Cooling
is calculated from a one-zone model using analytic fits to low temperature
Rosseland mean opacities. The model has two parameters: the initial surface
density Sigma_0 and the rotation frequency Omega. We survey the parameter space
and find: (1) The disk fragments when t_c,eff Omega = 1, where t_c,eff is an
effective cooling time defined as the average internal energy of the model
divided by the average cooling rate. This is consistent with earlier results
that used a simplified cooling function. (2) The initial cooling time t_c0 or a
uniform disk with Q = 1 can differ by orders of magnitude from t_c,eff in the
nonlinear outcome. The difference is caused by sharp variations in the opacity
with temperature. The condition t_c0 Omega = 1 therefore does not necessarily
indicate where fragmentation will occur. (3) The largest difference between
t_c,eff and t_c0 is near the opacity gap, where dust is absent and hydrogen is
largely molecular. (4) In the limit of strong illumination the disk is
isothermal; we find that an isothermal version of our model fragments for Q <
1.4. Finally, we discuss some physical processes not included in our model, and
find that most are likely to make disks more susceptible to fragmentation. We
conclude that disks with t_c,eff Omega < 1 do not exist.Comment: 30 pages, 12 figure
Eccentricity of radiative discs in close binary-star systems
Discs in binaries have a complex behavior because of the perturbations of the
companion star. Planet formation in binary-star systems both depend on the
companion star parameters and on the properties of the circumstellar disc. An
eccentric disc may increase the impact velocity of planetesimals and therefore
jeopardize the accumulation process. We model the evolution of discs in close
binaries including the effects of self-gravity and adopting different
prescriptions to model the disc's radiative properties. We focus on the
dynamical properties and evolutionary tracks of the discs. We use the
hydrodynamical code FARGO and we include in the energy equation heating and
cooling effects. Radiative discs have a lower disc eccentricity compared to
locally isothermal discs with same temperature profile. As a consequence, we do
not observe the formation of an internal elliptical low density region as in
locally isothermal disc models. However, the disc eccentricity depends on the
disc mass through the opacities. Akin to locally isothermal disc models,
self-gravity forces the disc's longitude of pericenter to librate about a fixed
orientation with respect to the binary apsidal line (). The disc's
radiative properties play an important role in the evolution of discs in
binaries. A radiative disc has an overall shape and internal structure that are
significantly different compared to a locally isothermal disc with same
temperature profile. This is an important finding both for describing the
evolutionary track of the disc during its progressive mass loss, and for planet
formation since the internal structure of the disc is relevant for
planetesimals growth in binary systems. The non-symmetrical distribution of
mass in these discs causes large eccentricities for planetesimals that may
affect their growth.Comment: accepted for publication in A&A (abstract truncated to comply with
astro-ph rules
On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis
We give an expression for the Lindblad torque acting on a low-mass planet
embedded in a protoplanetary disk that is valid even at locations where the
surface density or temperature profile cannot be approximated by a power law,
such as an opacity transition. At such locations, the Lindblad torque is known
to suffer strong deviation from its standard value, with potentially important
implications for type I migration, but the full treatment of the tidal
interaction is cumbersome and not well suited to models of planetary population
synthesis. The expression that we propose retains the simplicity of the
standard Lindblad torque formula and gives results that accurately reproduce
those of numerical simulations, even at locations where the disk temperature
undergoes abrupt changes. Our study is conducted by means of customized
numerical simulations in the low-mass regime, in locally isothermal disks, and
compared to linear torque estimates obtained by summing fully analytic torque
estimates at each Lindblad resonance. The functional dependence of our modified
Lindblad torque expression is suggested by an estimate of the shift of the
Lindblad resonances that mostly contribute to the torque, in a disk with sharp
gradients of temperature or surface density, while the numerical coefficients
of the new terms are adjusted to seek agreement with numerics. As side results,
we find that the vortensity related corotation torque undergoes a boost at an
opacity transition that can counteract migration, and we find evidence from
numerical simulations that the linear corotation torque has a non-negligible
dependency upon the temperature gradient, in a locally isothermal disk.Comment: Appeared in special issue of "Celestial Mechanics and Dynamical
Astronomy" on Extrasolar Planetary System
Vertically Self-Gravitating ADAFs in the Presence of Toroidal Magnetic Field
Force due to the self-gravity of the disc in the vertical direction is
considered to study its possible effects on the structure of a magnetized
advection-dominated accretion disc. We present steady-sate self similar
solutions for the dynamical structure of such a type of the accretion flows.
Our solutions imply reduced thickness of the disc because of the self-gravity.
It also imply that the thickness of the disc will increase by adding the
magnetic field strength.Comment: Accepted for publication in Astrophysics and Space Science
- …
