10 research outputs found

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Measurement of the D--->K^-\pi^+ strong phase difference in \psi(3770)--->D^0\antiD^0

    No full text
    n/

    Conducting Polymer Nanomaterials and Their Applications

    No full text
    A paradigm shift takes place in the fabrication of conducting polymers from bulky features with microsize to ultrafine features with nanometer range. Novel conducting polymer nanomaterials require the potential to control synthetic approaches of conducting polymer on molecular and atomic levels. In this article, the synthetic methodology of conducting polymer has been briefly considered with chemical oxidation polymerization and electrochemical polymerization. The recent achievements in the fabrication of conducting polymer nanomaterials have been extensively reviewed with respect to soft template method, hard template method and template-free method. It also details the morphological spectrum of conducting polymer nanomaterials such as nanoparticle, core-shell nanomaterial, hollow nanosphere, nanofiber/nanorod, nanotube, thin film and nanopattern and nanocomposite. In addition, their applications are discussed under nanometer-sized dimension.This work has been financially supported by the Brain Korea 21 program of the Korean Ministry of Education and the Hyperstructured Organic Materials Research Center supported by Korea Science and Engineering Foundation
    corecore