2,157 research outputs found

    The Atmosphere Explorer power subsystem

    Get PDF
    The design and operation of the power subsystem for the Atmospheric Explorer spacecraft are discussed. The additional functional redundancy which was added in several component areas to improve the overall subsystem reliability is analyzed. The battery charging technique has been modified to include third electrode overcharge control. The automatic removal of all battery charge is provided to correct abnormally high battery voltages. An undervoltage detector has been added which removes all nonessential spacecraft loads when the battery voltage falls below a given level. All automatic functions can be over-ridden by ground command

    Rheology of Granular Materials: Dynamics in a Stress Landscape

    Full text link
    We present a framework for analyzing the rheology of dense driven granular materials, based on a recent proposal of a stress-based ensemble. In this ensemble fluctuations in a granular system near jamming are controlled by a temperature-like parameter, the angoricity, which is conjugate to the stress of the system. In this paper, we develop a model for slowly driven granular materials based on the stress ensemble and the idea of a landscape in stress space. The idea of an activated process driven by the angoricity has been shown by Behringer et al (2008) to describe the logarithmic strengthening of granular materials. Just as in the Soft Glassy Rheology (SGR) picture, our model represents the evolution of a small patch of granular material (a mesoscopic region) in a stress-based trap landscape. The angoricity plays the role of the fluctuation temperature in SGR. We determine (a) the constitutive equation, (b) the yield stress, and (c) the distribution of stress dissipated during granular shearing experiments, and compare these predictions to experiments of Hartley & Behringer (2003).Comment: 17 pages, 4 figure

    Optimal energy quanta to current conversion

    Full text link
    We present a microscopic discussion of a nano-sized structure which uses the quantization of energy levels and the physics of single charge Coulomb interaction to achieve an optimal conversion of heat flow to directed current. In our structure the quantization of energy levels and the Coulomb blockade lead to the transfer of quantized packets of energy from a hot source into an electric conductor to which it is capacitively coupled. The fluctuation generated transfer of a single energy quantum translates into the directed motion of a single electron. Thus in our structure the ratio of the charge current to the heat current is determined by the ratio of the charge quantum to the energy quantum. An important novel aspect of our approach is that the direction of energy flow and the direction of electron motion are decoupled.Comment: 9 pages, 6 figure

    Instability of human societies as a result of conformity

    Full text link
    We introduce a new model that mimics the strong and sudden effects induced by conformity in tightly interacting human societies. Such effects range from mere crowd phenomena to dramatic political turmoil. The model is a modified version of the Ising Hamiltonian. We have studied the properties of this Hamiltonian using both a Metropolis simulation and analytical derivations. Our study shows that increasing the value of the conformity parameter, results in a first order phase transition. As a result a majority of people begin honestly to support the idea that may contradict the moral principles of a normal human beings though each individual would support the moral principle without tight interaction with the society. Thus, above some critical level of conformity our society occurs to be instable with respect to ideas that might be doubtful. Our model includes, in a simplified way, human diversity with respect to loyalty to the moral principles.Comment: 5 pages, 5 figures, accepted in Int. journ of modern physics section

    Nonequilibrium work distribution of a quantum harmonic oscillator

    Full text link
    We analytically calculate the work distribution of a quantum harmonic oscillator with arbitrary time-dependent angular frequency. We provide detailed expressions for the work probability density for adiabatic and nonadiabatic processes, in the limit of low and high temperature. We further verify the validity of the quantum Jarzynski equalityComment: 6 pages, 3 figure

    Coherence properties of the microcavity polariton condensate

    Get PDF
    A theoretical model is presented which explains the dominant decoherence process in a microcavity polariton condensate. The mechanism which is invoked is the effect of self-phase modulation, whereby interactions transform polariton number fluctuations into random energy variations. The model shows that the phase coherence decay, g1(t), has a Kubo form, which can be Gaussian or exponential, depending on whether the number fluctuations are slow or fast. This fluctuation rate also determines the decay time of the intensity correlation function, g2(t), so it can be directly determined experimentally. The model explains recent experimental measurements of a relatively fast Gaussian decay for g1(t), but also predicts a regime, further above threshold, where the decay is much slower.Comment: 5 pages, 1 figur

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    Molecular kinetic analysis of a finite-time Carnot cycle

    Full text link
    We study the efficiency at the maximal power ηmax\eta_\mathrm{max} of a finite-time Carnot cycle of a weakly interacting gas which we can reagard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures ThT_\mathrm{h} and TcT_\mathrm{c}, respectively, it is known that ηmax=1−Tc/Th\eta_\mathrm{max}=1-\sqrt{T_\mathrm{c}/T_\mathrm{h}} which is often called the Curzon-Ahlborn (CA) efficiency ηCA\eta_\mathrm{CA}. For the first time numerical experiments to verify the validity of ηCA\eta_\mathrm{CA} are performed by means of molecular dynamics simulations and reveal that our ηmax\eta_\mathrm{max} does not always agree with ηCA\eta_\mathrm{CA}, but approaches ηCA\eta_\mathrm{CA} in the limit of Tc→ThT_\mathrm{c} \to T_\mathrm{h}. Our molecular kinetic analysis explains the above facts theoretically by using only elementary arithmetic.Comment: 6 pages, 4 figure

    Emergence of robustness against noise: A structural phase transition in evolved models of gene regulatory networks

    Full text link
    We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as the selective pressure is increased and identify a phase transition from a random topology to a "segregated core" structure, where a smaller and more densely connected subset of the nodes is responsible for most of the regulation in the network. This segregated structure is very similar qualitatively to what is found in gene regulatory networks, where only a much smaller subset of genes --- those responsible for transcription factors --- is responsible for global regulation. We obtain the full phase diagram of the evolutionary process as a function of selective pressure and the average number of inputs per node. We compare the theoretical predictions with Monte Carlo simulations of evolved networks and with empirical data for Saccharomyces cerevisiae and Escherichia coli.Comment: 12 pages, 10 figure

    Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Get PDF
    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model, we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat, CimpC_{\rm imp}, to be calculated accurately from local static correlation functions; specifically via Cimp=∂Eionic∂T+1/2∂Ehyb∂TC_{\rm imp}=\frac{\partial E_{\rm ionic}}{\partial T} + 1/2\frac{\partial E_{\rm hyb}}{\partial T}, where EionicE_{\rm ionic} and EhybE_{\rm hyb} are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to CimpC_{\rm imp}. For the non-degenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The new approach could also be of interest within other impurity solvers, e.g., within quantum Monte Carlo techniques.Comment: 16 pages, 15 figures, published versio
    • …
    corecore