1,013 research outputs found
Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)
Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore‐arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3–7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal‐bearing unit (∼2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low‐coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300–400°C), higher ARM, higher‐frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal‐bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine‐grained authigenic magnetite. We suggest that iron‐reducing bacteria facilitated the production of fine‐grained magnetite within the coal‐bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron‐reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal‐bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere
Location of attachment moiety on Mycoplasma pneumoniae.
Mycoplasma pneumoniae initiates infection in the human host by attachment to respiratory epithelium. The organism attaches by a specialized terminal structure. Monoclonal antibodies to an organism surface protein (P1) inhibited attachment to respiratory epithelium and were localized to the tip structure by a ferritin antibody label. The P1 protein was degraded by trypsin treatment to smaller polypeptides that possessed the same antigenic determinants as the larger P1 protein when reacted with the specific monoclonal antibody, and evidence has been provided for the existence of multiple antigenic determinants on the attachment protein
Suppression and Enhancement of Soliton Switching During Interaction in Periodically Twisted Birefringent Fiber
Soliton interaction in periodically twisted birefringent optical fibers has
been analysed analytically with refernce to soliton switching. For this purpose
we construct the exact general two-soliton solution of the associated coupled
system and investigate its asymptotic behaviour. Using the results of our
analytical approach we point out that the interaction can be used as a switch
to suppress or to enhance soliton switching dynamics, if one injects
multi-soliton as an input pulse in the periodically twisted birefringent fiber.Comment: 10 pages, 4 figures, Latex, submitted to Phys. Rev.
Emerging resistance among bacterial pathogens in the intensive care unit – a European and North American Surveillance study (2000–2002)
Background Globally ICUs are encountering emergence and spread of antibiotic-resistant pathogens and for some pathogens there are few therapeutic options available.
Methods Antibiotic in vitro susceptibility data of predominant ICU pathogens during 2000–2 were analyzed using data from The Surveillance Network (TSN) Databases in Europe (France, Germany and Italy), Canada, and the United States (US).
Results Oxacillin resistance rates among Staphylococcus aureus isolates ranged from 19.7% to 59.4%. Penicillin resistance rates among Streptococcus pneumoniae varied from 2.0% in Germany to as high as 20.2% in the US; however, ceftriaxone resistance rates were comparably lower, ranging from 0% in Germany to 3.4% in Italy. Vancomycin resistance rates among Enterococcus faecalis were ≤ 4.5%; however, among Enterococcus faecium vancomycin resistance rates were more frequent ranging from 0.8% in France to 76.3% in the United States. Putative rates of extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae were low, \u3c6% among Escherichia coli in the five countries studied. Ceftriaxone resistance rates were generally lower than or similar to piperacillin-tazobactam for most of the Enterobacteriaceae species examined. Fluoroquinolone resistance rates were generally higher for E. coli (6.5% – 13.9%), Proteus mirabilis (0–34.7%), and Morganella morganii (1.6–20.7%) than other Enterobacteriaceae spp (1.5–21.3%). P. aeruginosa demonstrated marked variation in β-lactam resistance rates among countries. Imipenem was the most active compound tested against Acinetobacter spp., based on resistance rates.
Conclusion There was a wide distribution in resistance patterns among the five countries. Compared with other countries, Italy showed the highest resistance rates to all the organisms with the exception of Enterococcus spp., which were highest in the US. This data highlights the differences in resistance encountered in intensive care units in Europe and North America and the need to determine current local resistance patterns by which to guide empiric antimicrobial therapy for intensive care infections
From Resistance to Receptiveness: Farmer Willingness to Participate in Extension Discussions About Climate Variability and Climate Change
Identifying what Extension professionals believe are the critical elements of a communication strategy that is most likely to encourage agricultural producers to participate in discussions of climate variability and climate change is pivotal to providing timely solutions to issues facing farmers. The current study involved interviews with 50 Extension professionals from four southeastern states (Alabama, Florida, Georgia, and South Carolina) who were engaged in ongoing work related to climate and agriculture. Respondents were asked to assess how best to engage farmers in conversations related to climate variability and climate change. Qualitative analysis showed that Extension professionals recommended avoiding content related to politics, attribution of climate change to human causes, and telling farmers what to do. Respondents recommended emphasizing adaptation strategies, climate variability over climate change, evidence that climate change exists, and the financial benefits for farmers. In addition, Extension professionals proposed several delivery methods they thought would be most effective with farmers, including delivery tailored to the characteristics of the audience, a positive overall tone, and an understanding that engagement should be viewed as a long-term process based on building relationships with farmers. The findings suggest that farmers are a potentially receptive audience on climate issues when properly approached
Profitability, Engaging Delivery, and Trust: How Extension Professionals Can Optimize Farmer Adoption of Climate-related Adaptation Strategies
This study examined Extension professionals’ perspectives on how to optimize the chances that farmers will adopt climate adaptation strategies designed to minimize risks associated with climate variability and climate change. In-depth interviews were conducted with Extension professionals in four southeastern states (Alabama, Florida, Georgia, and South Carolina). Responses were coded and analyzed, resulting in three recommendations. First, focus on profitability and issues of immediate concern to farmers. Second, use engaging delivery methods, especially field trials conducted under realistic conditions. Third, build trust with farmers, primarily by focusing on research-based information. This study has practical implications for how Extension professionals should approach the work of addressing climate issues in agriculture
Climate-Related Risks and Management Issues Facing Agriculture in the Southeast: Interviews with Extension Professionals
To explore Extension professionals\u27 perceptions of the potential impact of climate variability and climate change on agriculture and to identify the top climate-related issues facing farmers, we conducted interviews with agricultural Extension personnel from Alabama, Florida, Georgia, and South Carolina. Of those interviewed, 92% believed climate change will affect agriculture a moderate amount or a great deal. Qualitative analyses revealed that the Extension professionals considered scarcity of water resources, temperature fluctuations, pest and disease pressures, forecast challenges, seasonal variability, and adaptation strategies as among the most important climate-related issues affecting agriculture in the Southeast
Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding
The nuclear factor E2-related factor 2 (Nrf2)–Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome
- …