464 research outputs found

    Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue

    Get PDF
    Citation: Aranjuez, G., Burtscher, A., Sawant, K., Majumder, P., & McDonald, J. A. (2016). Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Molecular Biology of the Cell, 27(12), 1898-1910. doi:10.1091/mbc.E15-10-0744Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues

    Peachy Parallel Assignments (EduHPC 2018)

    Get PDF
    Peachy Parallel Assignments are a resource for instructors teaching parallel and distributed programming. These are high-quality assignments, previously tested in class, that are readily adoptable. This collection of assignments includes implementing a subset of OpenMP using pthreads, creating an animated fractal, image processing using histogram equalization, simulating a storm of high-energy particles, and solving the wave equation in a variety of settings. All of these come with sample assignment sheets and the necessary starter code.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Facilitar la inclusión de ejercicios prácticos de programación paralela en cursos de Computación Paralela o de alto rendimiento (HPC)Comunicación en congreso: Descripción de ejercicios prácticos con acceso a material ya desarrollado y probado

    GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age

    Full text link
    The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain the age of the recent star formation event in the Galactic Centre and to characterise it as an interferometric reference for observations of the Galactic Centre with the instrument GRAVITY, which will equip the Very Large Telescope Interferometer in the near future. We present the first H-band interferometric observations of GCIRS 7, obtained using the PIONIER visitor instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on data spanning 4 decades, and measured the star's effective temperature using SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013: uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We detect a significant circumstellar contribution at K-band. The star and its environment are variable in brightness and in size. The photospheric H-band variations are well modelled with two periods: P0~470+/-10 days (amplitude ~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured from CO equivalent width, =3600+/-195K. The size, periods, luminosity (=-8.44+/-0.22) and effective temperature are consistent with an M1 supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr (depending on rotation). This age is in remarkable agreement with most estimates for the recent star formation event in the central parsec. Caution should be taken when using this star as an interferometric reference as it is variable in size, is surrounded by a variable circumstellar environment and large convection cells may form on its photosphere.Comment: Accepted for publication in A&A. 10 pages, 12 figure

    Sphingolipids and impaired hypoxic stress responses in Huntington disease.

    Get PDF
    Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD

    The carbon footprint of large astronomy meetings

    Get PDF
    The annual meeting of the European Astronomical Society took place in Lyon, France, in 2019, but in 2020 it was held online only due the COVID-19 pandemic. The carbon footprint of the virtual meeting was roughly 3,000 times smaller than the face-to-face one, providing encouragement for more ecologically minded conferencing.Comment: Originated in a Twitter discussion (https://twitter.com/sarahkendrew/status/1144186571538739202) at EWASS 2019; followed up at the EAS 2020 conference sustainability session by https://astronomersforplanet.earth - published in Nature Astronomy, September 202

    On the relation of optical obscuration and X-ray absorption in Seyfert galaxies

    Full text link
    The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. But there are many borderline cases and also numerous examples where the optical and X-ray classifications appear to be in conflict. In this article we re-visit the relation between optical obscuration and X-ray absorption in AGNs. We make use of our "dust color" method (Burtscher et al. 2015) to derive the optical obscuration A_V and consistently estimated X-ray absorbing columns using 0.3--150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column N_H and derive the Seyfert sub-classes of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log L_X / (erg/s) ~ 41.5 - 43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column N_H = 10^22.3 / cm^2 to be consistent with the optical classification. We find that N_H is related to A_V and that the N_H/A_V ratio is approximately Galactic or higher in all sources, as indicated previously. But in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic N_H/A_V can simply be explained by dust-free neutral gas within the broad line region in some sources, that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust color method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.Comment: 7 pages, 3 figures, accepted for publication by A&A; updated PDF to include abstrac
    corecore