8,639 research outputs found
Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment
Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters
Coronal heating in multiple magnetic threads
Context. Heating the solar corona to several million degrees requires the
conversion of magnetic energy into thermal energy. In this paper, we
investigate whether an unstable magnetic thread within a coronal loop can
destabilise a neighbouring magnetic thread. Aims. By running a series of
simulations, we aim to understand under what conditions the destabilisation of
a single magnetic thread can also trigger a release of energy in a nearby
thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate
the temporal evolution of coronal magnetic fields during a kink instability and
the subsequent relaxation process. We assume that a coronal magnetic loop
consists of non-potential magnetic threads that are initially in an equilibrium
state. Results. The non-linear kink instability in one magnetic thread forms a
helical current sheet and initiates magnetic reconnection. The current sheet
fragments, and magnetic energy is released throughout that thread. We find
that, under certain conditions, this event can destabilise a nearby thread,
which is a necessary requirement for starting an avalanche of energy release in
magnetic threads. Conclusions. It is possible to initiate an energy release in
a nearby, non-potential magnetic thread, because the energy released from one
unstable magnetic thread can trigger energy release in nearby threads, provided
that the nearby structures are close to marginal stability
Recent advances in coronal heating
The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.PostprintPeer reviewe
Thermal and non-thermal emission from reconnecting twisted coronal loops
Twisted magnetic fields should be ubiquitous in flare-producing active
regions where the magnetic fields are strongly non-potential. It has been shown
that reconnection in helical magnetic coronal loops results in plasma heating
and particle acceleration distributed within a large volume, including the
lower coronal and chromospheric sections of the loops. This scenario can be an
alternative to the standard flare model, where particles are accelerated only
in a small volume located in the upper corona. We use a combination of MHD
simulations and test-particle methods, which describe the development of kink
instability and magnetic reconnection in twisted coronal loops using resistive
compressible MHD, and incorporate atmospheric stratification and large-scale
loop curvature. The resulting distributions of hot plasma let us estimate
thermal X-ray emission intensities. The electric and magnetic fields obtained
are used to calculate electron trajectories using the guiding-centre
approximation. These trajectories combined with the MHD plasma density
distributions let us deduce synthetic HXR bremsstrahlung intensities. Our
simulations emphasise that the geometry of the emission patterns produced by
hot plasma in flaring twisted coronal loops can differ from the actual geometry
of the underlying magnetic fields. The twist angles revealed by the emission
threads (SXR) are consistently lower than the field-line twist present at the
onset of the kink-instability. HXR emission due to the interaction of energetic
electrons with the stratified background are concentrated at the loop
foot-points in these simulations, even though the electrons are accelerated
everywhere within the coronal volume of the loop. The maximum of HXR emission
consistently precedes that of SXR emission, with the HXR light-curve being
approximately proportional to the temporal derivative of the SXR light-curve.Comment: (accepted for publication on A&A
Three-Dimensional Simulations of Solar and Stellar Dynamos: The Influence of a Tachocline
We review recent advances in modeling global-scale convection and dynamo
processes with the Anelastic Spherical Harmonic (ASH) code. In particular, we
have recently achieved the first global-scale solar convection simulations that
exhibit turbulent pumping of magnetic flux into a simulated tachocline and the
subsequent organization and amplification of toroidal field structures by
rotational shear. The presence of a tachocline not only promotes the generation
of mean toroidal flux, but it also enhances and stabilizes the mean poloidal
field throughout the convection zone, promoting dipolar structure with less
frequent polarity reversals. The magnetic field generated by a convective
dynamo with a tachocline and overshoot region is also more helical overall,
with a sign reversal in the northern and southern hemispheres. Toroidal
tachocline fields exhibit little indication of magnetic buoyancy instabilities
but may be undergoing magneto-shear instabilities.Comment: 14 pages, 5 color figures, to appear in Proc. GONG 2008/SOHO XXI
Meeting on Solar-Stellar Dynamos as Revealed by Helio and Asteroseismology,
held August 15-18, 2008, Boulder, CO, Astronomical Soc. Pac. Conf. Series,
volume TB
- …
