60 research outputs found

    On Profit-Maximizing Pricing for the Highway and Tollbooth Problems

    Get PDF
    In the \emph{tollbooth problem}, we are given a tree \bT=(V,E) with nn edges, and a set of mm customers, each of whom is interested in purchasing a path on the tree. Each customer has a fixed budget, and the objective is to price the edges of \bT such that the total revenue made by selling the paths to the customers that can afford them is maximized. An important special case of this problem, known as the \emph{highway problem}, is when \bT is restricted to be a line. For the tollbooth problem, we present a randomized O(logn)O(\log n)-approximation, improving on the current best O(logm)O(\log m)-approximation. We also study a special case of the tollbooth problem, when all the paths that customers are interested in purchasing go towards a fixed root of \bT. In this case, we present an algorithm that returns a (1ϵ)(1-\epsilon)-approximation, for any ϵ>0\epsilon > 0, and runs in quasi-polynomial time. On the other hand, we rule out the existence of an FPTAS by showing that even for the line case, the problem is strongly NP-hard. Finally, we show that in the \emph{coupon model}, when we allow some items to be priced below zero to improve the overall profit, the problem becomes even APX-hard

    Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing

    Get PDF
    We consider the Stackelberg shortest-path pricing problem, which is defined as follows. Given a graph G with fixed-cost and pricable edges and two distinct vertices s and t, we may assign prices to the pricable edges. Based on the predefined fixed costs and our prices, a customer purchases a cheapest s-t-path in G and we receive payment equal to the sum of prices of pricable edges belonging to the path. Our goal is to find prices maximizing the payment received from the customer. While Stackelberg shortest-path pricing was known to be APX-hard before, we provide the first explicit approximation threshold and prove hardness of approximation within 2−o(1). We also argue that the nicely structured type of instance resulting from our reduction captures most of the challenges we face in dealing with the problem in general and, in particular, we show that the gap between the revenue of an optimal pricing and the only known general upper bound can still be logarithmically large

    Assortment optimisation under a general discrete choice model: A tight analysis of revenue-ordered assortments

    Full text link
    The assortment problem in revenue management is the problem of deciding which subset of products to offer to consumers in order to maximise revenue. A simple and natural strategy is to select the best assortment out of all those that are constructed by fixing a threshold revenue π\pi and then choosing all products with revenue at least π\pi. This is known as the revenue-ordered assortments strategy. In this paper we study the approximation guarantees provided by revenue-ordered assortments when customers are rational in the following sense: the probability of selecting a specific product from the set being offered cannot increase if the set is enlarged. This rationality assumption, known as regularity, is satisfied by almost all discrete choice models considered in the revenue management and choice theory literature, and in particular by random utility models. The bounds we obtain are tight and improve on recent results in that direction, such as for the Mixed Multinomial Logit model by Rusmevichientong et al. (2014). An appealing feature of our analysis is its simplicity, as it relies only on the regularity condition. We also draw a connection between assortment optimisation and two pricing problems called unit demand envy-free pricing and Stackelberg minimum spanning tree: These problems can be restated as assortment problems under discrete choice models satisfying the regularity condition, and moreover revenue-ordered assortments correspond then to the well-studied uniform pricing heuristic. When specialised to that setting, the general bounds we establish for revenue-ordered assortments match and unify the best known results on uniform pricing.Comment: Minor changes following referees' comment

    Item pricing for revenue maximization

    Full text link

    Improved Approximation Algorithms for Box Contact Representations ⋆

    Get PDF
    Abstract. We study the following geometric representation problem: Given a graph whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in the plane such that two rectangles touch if the graph contains an edge between them. This problem is called CONTACT REPRESENTATION OF WORD NETWORKS (CROWN) since it formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. CROWN is known to be NP-hard, and there are approximation algorithms for certain graph classes for the optimization version, MAX-CROWN, in which realizing each desired adjacency yields a certain profit. We present the first O(1)-approximation algorithm for the general case, when the input is a complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is necessarily planar, we also consider several planar graph classes (namely stars, trees, outerplanar, and planar graphs), improving upon the known results. For some graph classes, we also describe improvements in the unweighted case, where each adjacency yields the same profit. Finally, we show that the problem is APX-hard on bipartite graphs of bounded maximum degree.

    Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy in gastroenteropancreatic neuroendocrine neoplasms? - A preclinical assessment in vitro and in vivo

    Get PDF
    BACKGROUND: Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might be overcome by DNA damage inhibition induced by proteasome inhibitors such as bortezomib. METHODS AND RESULTS: In this study, we assessed several combined treatment modalities in vitro and in vivo. By cell-based functional analyses, in a 3D in ovo and an orthotopic mouse model, we demonstrated sensitizing effects of bortezomib combined with cisplatin, radiation and peptide receptor radionuclide therapy (PRRT). By gene expression profiling and western blot, we explored the underlying mechanisms, which resulted in an impaired DNA damage repair. Therapy-induced DNA damage triggered extrinsic proapoptotic signaling as well as the induction of cell cycle arrest, leading to a decreased vital tumor volume and altered tissue composition shown by magnetic resonance imaging and F-18-FDG-PET in vivo, however with no significant additional benefit related to PRRT alone. CONCLUSIONS: We demonstrated that bortezomib has short-term sensitizing effects when combined with DNA damaging therapy by interfering with DNA repair in vitro and in ovo. Nevertheless, due to high tumor heterogeneity after PRRT in long-term observations, we were not able to prove a therapeutic advantage of bortezomib-combined PRRT in an in vivo mouse model

    Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy in gastroenteropancreatic neuroendocrine neoplasms? – A preclinical assessment in vitro and in vivo

    Get PDF
    Background: Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might be overcome by DNA damage inhibition induced by proteasome inhibitors suc
    corecore