The assortment problem in revenue management is the problem of deciding which
subset of products to offer to consumers in order to maximise revenue. A simple
and natural strategy is to select the best assortment out of all those that are
constructed by fixing a threshold revenue π and then choosing all products
with revenue at least π. This is known as the revenue-ordered assortments
strategy. In this paper we study the approximation guarantees provided by
revenue-ordered assortments when customers are rational in the following sense:
the probability of selecting a specific product from the set being offered
cannot increase if the set is enlarged. This rationality assumption, known as
regularity, is satisfied by almost all discrete choice models considered in the
revenue management and choice theory literature, and in particular by random
utility models. The bounds we obtain are tight and improve on recent results in
that direction, such as for the Mixed Multinomial Logit model by
Rusmevichientong et al. (2014). An appealing feature of our analysis is its
simplicity, as it relies only on the regularity condition.
We also draw a connection between assortment optimisation and two pricing
problems called unit demand envy-free pricing and Stackelberg minimum spanning
tree: These problems can be restated as assortment problems under discrete
choice models satisfying the regularity condition, and moreover revenue-ordered
assortments correspond then to the well-studied uniform pricing heuristic. When
specialised to that setting, the general bounds we establish for
revenue-ordered assortments match and unify the best known results on uniform
pricing.Comment: Minor changes following referees' comment