49 research outputs found

    Functional shift with maintained regenerative potential following portal vein ligation

    Get PDF
    Selective portal vein ligation (PVL) allows the two-stage surgical resection of primarily unresectable liver tumours by generating the atrophy and hypertrophy of portally ligated (LL) and non-ligated lobes (NLL), respectively. To evaluate critically important underlying functional alterations, present study characterised in vitro and vivo liver function in male Wistar rats (n = 106; 210-250 g) before, and 24/48/72/168/336 h after PVL. Lobe weights and volumes by magnetic resonance imaging confirmed the atrophy-hypertrophy complex. Proper expression and localization of key liver transporters (Ntcp, Bsep) and tight junction protein ZO-1 in isolated hepatocytes demonstrated constantly present viable and well-polarised cells in both lobes. In vitro taurocholate and bilirubin transport, as well as in vivo immunohistochemical Ntcp and Mrp2 expressions were bilaterally temporarily diminished, whereas LL and NLL structural acinar changes were divergent. In vivo bile and bilirubin-glucuronide excretion mirrored macroscopic changes, whereas serum bilirubin levels remained unaffected. In vivo functional imaging (indocyanine-green clearance test; (99mTc)-mebrofenin hepatobiliary scintigraphy; confocal laser endomicroscopy) indicated transitionally reduced global liver uptake and -excretion. While LL functional involution was permanent, NLL uptake and excretory functions recovered excessively. Following PVL, functioning cells remain even in LL. Despite extensive bilateral morpho-functional changes, NLL functional increment restores temporary declined transport functions, emphasising liver functional assessment

    Structural Analysis of a Peptide Fragment of Transmembrane Transporter Protein Bilitranslocase

    Get PDF
    Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    No full text
    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO(2) reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW(e) natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit

    Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    No full text
    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO(2) reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW(e) natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit

    Influence of body mass on glycemic control in a type 2 diabetic population: a 3-years follow-up.

    No full text
    Obesity is often associated with type 2 (non insulin-dependent) diabetes. A growing body of evidence support the hypothesis that these two diseases share a common pathogenesis. Nevertheless, experience derived from clinical observation on type 2 diabetic patients indicates that reduction of body weight is not always accompanied by an improvement in metabolic control and that a good metabolic control is often obtained without influencing body composition. Aim of the present study was to evaluate the relationship between body mass and glycemic control in a type 2 diabetic population by a 3 years observational study. A cohort of 562 subjects was studied. At entry more than 80% of patients were overweight or obese according to the body mass index (BMI) scale and this proportion was not significantly reduced at the end of the follow-up. At entry all patients had a glycosylated hemoglobin (HbA1c) value above 8.1% whereas at the end of follow-up more than 2/3 of patients were in good metabolic control. No relationship was observed between modification of body mass and metabolic control. These data confirm the high frequency of obesity among type 2 diabetic individuals but they suggest that impaired glucose metabolism and alteration of body weight have different pathogenesis

    Randomized, double-blind, placebo-controlled trial to evaluate the effect of Helicobacter pylori eradication on glucose homeostasis in type 2 diabetic patients

    No full text
    Literature data suggest an association between Helicobacter pylori infection and glucose homeostasis. However, a causative link between them has not been demonstrated yet. The aim of this study is to investigate the effect of H. pylori eradication on glucose homeostasis in patients with type 2 diabetes
    corecore