1,808 research outputs found

    Status of magnetic suspension technology

    Get PDF
    The reasons for the continuing interest in the Magnetic Suspension and Balance System (MSBS) are highlighted. Typical problems that can arise because of model-support interference in a transonic wind tunnel are shown to illustrate the need for MSBS. The two magnetic suspension systems in operation at Langley are the only ones active in the U.S. One of these systems is the 13 inch MSBS which was borrowed from the Air Force Arnold Engineering Development Center. The other system is the 6 inch MSBS which was developed by MIT Aerophysics Laboratory with NASA and DOD funding. Each of these systems is combined with a subsonic wind tunnel. Ongoing research in both of these systems is covered. Last year, Madison Magnetics, Inc., completed a contractual design and cost study utilizing some advance concepts for a large MSBS which would be compatible with an 8 foot transonic wind tunnel and the highlights of the study are presented. Sverdrup Technology, Inc., recently performed a study under contract for Langley on the potential usefulness to the aerospace industry of a proposed large MSBS combined with a suitable transonic wind tunnel. The results of that study are discussed. Langley has partially funded the MSBS work at the University of Southampton for about 6 years under a grant arrangement and the major results are summarized

    Dynamic stability characteristics of the combination space shuttle orbiter and ferry vehicle

    Get PDF
    Subsonic forced-oscillation tests of a 0.015 scale model of the space shuttle orbiter/747 ferry vehicle were conducted in the Langley high speed 7- by 10-foot tunnel at Mach numbers of 0.2, 0.4, and 0.5 for angles of attack up to 12 deg. Tests were made of the basic 747 airplane, of the modified 747 (tip fins and struts added), of the ferry configuration, (747 plus orbiter at an incidence angle of 3 deg), and of the approach and landing test configuration (747 plus orbiter at an incidence angle of 6 deg)

    Results of buffet tests in a cryogenic wind tunnel

    Get PDF
    Buffet tests on two semispan wing models with different leading edge sweep show that it is feasibile to use the standard dynamic wing root bending moment technique in a cryogenic wind tunnel. One model was a slender 65 deg swept delta wing with sharp leading edges. The other model was an unswept wing of aspect ratio 1.5 with a British NPL 9510 airfoil section. The results for the 65 deg swept delta wing indicate the importance of matching the reduced frequency parameter in model tests for planforms which are sensitive to reduced frequency parameter if quantitative buffet measurements are required. The unique ability of a pressurized cryogenic wind tunnel to separate the effects of Reynolds number and of static aeroelastic distortion by variations in the tunnel stagnation temperature and pressure were demonstrated

    Aerodynamic roll damping of a T-tail transport configuration

    Get PDF
    The aerodynamic roll damping and the yawing moment due to roll rate for a model of a T-tail transport with aft-mounted engines were measured by means of a small-amplitude forced-oscillation mechanism. The tests were made for Mach numbers between 0.21 and 0.80 over a range of angles of attack from about minus 4 deg to 22 deg. The basic configuration had positive damping in roll at low angles of attack with regions of low positive and negative damping for angles of attack above 8 deg to 10 deg. There was good agreement between the theoretical estimates of the roll damping for the wing alone and the experimental results at an angle of attack of 0 deg for Mach numbers of 0.60 and less. The T-tail configuration and the engine nacelles mounted aft on the fuselage did not significantly affect either the damping in roll or the yawing moment due to roll rate

    Subsonic dynamic stability characteristics of two close-coupled canard-wing configurations

    Get PDF
    The pitch, yaw, and roll damping, as well as the oscillatory stability in pitch and in yaw, were measured for two canard wing configurations with wing sweeps of 44 deg and 60 deg. Tests were made at free stream Mach numbers of 0.3, 0.4, and 0.7 and for angles of attack from about -4 deg to 20 deg. The effects of various components such as the canard, nose strakes, wings, vertical tail, and horizontal tail were determined. The basic canard wing, vertical tail configurations generally had positive damping in pitch, yaw, and roll. The effect of the canard was generally beneficial except for its tendency to decrease the oscillatory directional stability

    Subsonic roll damping of a model with swept-back and swept-forward wings

    Get PDF
    The aerodynamic roll damping and the yawing moment due to roll rate characteristics were investigated at subsonic speeds for a model with either sweptback or swept forward wings. The tests were made in the Langley high speed 7 by 10 foot tunnel for Mach numbers between 0.3 and 0.7. The configuration with a 60 deg sweptback wing had positive damping in roll up to the maximum test angle of attack of almost 20 deg. The 32 deg swept forward wing configuration had positive damping in roll at the lower angles of attack, but there was a decrease in damping and negative damping in roll was measured at the highest angles of attack

    Dynamic stability characteristics in pitch, yaw, and roll of a supercritical-wing research airplane model

    Get PDF
    The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured

    Supersonic dynamic stability characteristics of a space shuttle orbiter

    Get PDF
    Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown

    Further buffeting tests in a cryogenic wind tunnel

    Get PDF
    Further measurements of buffeting, using wing-root strain gauges, were made in the NASA Langley 0.3 m Cryogenic Wind Tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance of variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely different bending stiffness and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the flow on this configuration would be insensitive to variations in Reynold number. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. For brevity the test Mach numbers were restricted to M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing

    Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel

    Get PDF
    Aerodynamic force measurements on a generalized 75 deg delta wing model with sharp leading edges were made with a three component internal strain gage balance in a cryogenic wind tunnel at stagnation temperatures of 300 K, 200 K, and 110 K. The feasibility of using a strain gage balance without thermal control in a cryogenic environment as well as the use of electrical resistance heaters, an insulator between the model and the balance, and a convection shield on the balance was investigated. Force and moment data on the delta wing model as measured by the balance are compared at the different temperatures while holding constant either the Reynolds number or the tunnel stagnation pressure. Tests were made at Mach numbers of 0.3 and 0.5 and at angles of attack up to 29 deg. The results indicate that it is feasible to acquire accurate force and moment data while operating at steady state thermal conditions in a cryogenic wind tunnel, either with or without electrical heaters on the balance. Within the limits of the balance accuracy, there were no apparent Reynolds number effects on the aerodynamic results for the delta wind model
    corecore