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INTRODCTION

Swept-back wings have been widely used on transonic and supsrsonic
aircraft to delay the effects of transonic compressibility and thereby
achieve satisfactory performance at high speeds. As is well known,
swept-forward wings are also & posgsible solution to the transonice
compressibility problem, but the siructural design and weight of swept-
forward wings has been plagued by the problem of bending-torsion d4i-
vergence (see referenceé.l and 2). However, a recent paper (reference 3}
on the use of advanced composite materials with optimized orientation
end thickness shows promise as a means of alleviating the weight penalty
previously associasted with the use of swept-forward wings on high-speed
aireraft.

The obJective of thig study was to obtain some cpmparative.aero-
dynamic roll daﬁping-dﬁta at subsosic speeds on swept-back and swept-
forward wings on & general research fighter configuration fuselage.

The forced—-ogcillation roll technique was used to determine the roll
damping and the yawing moment‘due to roll rate, This“investigation was
cdnducted in.the Langley high-sp-ed T- by lO~foot tunnel at Mach numbers
ranging from 0.3 to 0.7 end angles of attack from -4° to about 20°.

Tt should be noted that the model wing panels used in.this study were
designed and constructed for tests of swepi-back wing configurations
having sherp leading edges. The fact that the wing panels have circular

arc sections made it feasible %o utilize these existing wing panels in
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the reversed or swept-forward orxentation. It must ve kept in mind
however, thet because of the flow separation at the sharp leading edges
that this dats should not bhe expectod to be indicative of the damping
characteristics of thick, rounded leading-edge wings.

The stabic lonmitudinal sand lateral-directional aesrodynamic
characteristics of swept-back and swept-forward wing configurations
wtilizing the same wing penals as the present study are included in
reference U.

Some previous tests of the roll damping of isolated swept-forward

wings at low speeds are reported on in references 5 to T.



SYMBOLS

The aerodynamic parameters in this report are referred to the body
system of axes as shown in figure 1 in which the coefficients, engles
and angular velocity are shown in the positive sense. These axes origi-
nate at the moment reference center which was located according to the
model drawings in figure 2.

Units of measurement are presented in the International System of
Units (SI). Details on the use of SI together with the physical constants

and conversion factors ere given in reference 8.

o reference span, O.5h36 meter

c mean geometric chord, 0.2h56 meter

f frequency of oscillation, hertz

k reduced-frequency parameter, ub/2V, radians
M free-stream Mach number

angular velocity of model abouh X-axis, radians/second

g

q_ free-stream dynamic pressure, pascals
R Reynolds number based on c

S reference area, 0.1156 méter2

v . free-stream velocity, meters/second -




1,2 reference body axes

a angle of attack, degrees
B angle of sideslip, degrees
w angular velocity, 2#f, radians/second
C rolling-moment coefficient, Bolling moment/ qub
1
Cn yaving-moment coefficient, Yawing moment/quﬁb
ac
C = 7r—l per radian
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ot

C sin g - kdc rolling moment due to roll displacement parameter, per radien

e+ C1- sin o aamping-in-roll rzaremeter, per radian

; ) BCn
4 3B per radian

[op]
i}

3cC

1 c ., = 5 per radian
: n af 22
: ev

T

1 e e

per radian

C =  ————— Der radian

C sin o - kacn yawing moment due to roll displacement parameter, per

radian

_ Cn + Cn_ sin ¢ yewing moment due to roll rate parameter, per radian
. P B -

A dot over z quantity indicates a first derivative with respect to
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Model component designations:
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body
vertical tail
wing

horizontal tail
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MODEL AND WEST APPARATUS

Three-view drawings of the model with the wing in both the swept
back and in the swept-forward configuration are shown in figure 2. The
same uncambered and untwisted wing panels with ecircular arc asirfoil
sections were used for all configurations. The wing had a nominal
leading~edge sweep of 60° in the swept-back configuration and & nominal
-32° leading edge sweep in the swept-forwerd configuration. By reversing
the wing,the half-chord sveep remains the same magnitude implying spproxi-
mately the same structural span. The horizontal and vertical tail
surfaces had a leading-edge sweep of 51.7° and each of the three panels
had the same dimensions. Detailed gedmetric characteristics of the model
are listed in Table I.

A photograph of the model with the wings in the swept-forward orien-
tation mbunted on the sting.for the forced-oscillation roll tests in
the Langley high speed T- by l0-foot tunnel is shown in figure 3. A
description and the operating characteristics of the T- by 10-foot wind
tunnel can be found in reference 9. A photograph of the small-zmplitude
forcedréscillation roll balance is shown in figure 4. Reference 10
contains a detailed description of the oscillatory roll balance and the

associated data-reduction procedure.

Tests

The dynemic stability parameters for the configuration with the
. . L} .
wing in the 60° sweep-back orientation were measured at Mach numbers
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of U4 and 0.7 while for the 329 cwept-forwerd wing the tests were made
at 0.3 and 0.7 Mach nuber. ‘'he nominal values of the wind tunnel test
conditions are listed in Table II. The ranpge of angle of attack
evailable with the dynamic ctability sting was from about -4° to 20°,
The amplitude of the roll oscillation for this iuvestipation was about
2.59 and waus determined by the mechanical throw of the actuating crank.
All of the data were token with the models cseillating at the frequency
for veloeity resonunee (cee reference 10) which varied from about 6.42
to 5.31 hertz.

To insure a turbulent boundary layer over the model, carborundum
prains were aprlied as three-dimensional roughness to the model nose and
along the leading edge of the wing snd the tail surfaces. The grit size
and locabion were chosen based on the work in reference 11l. The transi-
tion strips consisted of No. 120 carborundum grit applied in bands 0.16
cm wide loceted 2.5% em aft of the model nose and 1.27 cm streamwise

aft of the leading edge of the wing and the tall surfaces.

Tesults and Diccusceion

e effect of Mach npumber on the dewpins in roll parameter for the
0% gwept-vack wing confipgurstion is shown ‘n figure 5(a)}. The swept-
back configurstion had positive dawping in roll over the anpgle of atiack
ronfe and the roil damping d4id not fall belew the 0% angle of attack
value at wny of ihe test conditions., The mejor &ifference between the

results for the itwo Mach numbers wes a peck in the roll dumping at on




anpgle of attack of 12° for the 0.7 Mach number data., The rolling moment
due to roll displacement parameter is included with the demping in roll
parameter in the figures for completeness since the two components of
rolling moment are measured at the same time. The usefulness of the
rolling rmoment due to roll displacement parametér is reduced, however,
because of the sin ¢ multiplier in the 013 term, The parameter does
serve to indicate the trends and sign changes of the dihederal effect.
The 60° swept-Lack ning configuration in figure 5(a) is seen to have
positive dihedersl effect,

The yawing moment due to roll rate parameter for the 60° sweep
configuration in the upper portion of figure 5(b) shows little variation
with Mach number or angle of attack. The yawing moment due to roll dis-
placement parameter in the lower part of figure 5(b) indicztes there
is pogitive directional stability over the range of angle of attack., -

The damping in roll parameter for the swept-forward wing configura~
tion is plotted in figure 6(a) for Mach numbers of 0.3 and 0.7. There:
is an increase in the roll damping up to an angle of attack of 8° to
10° and then a decrease with negative roll damping (positive values of
the damping in roll parameter) at the highest angles of attack for both
Mach numbers. This decrease in #7%ll damping is presumed to‘be a result
of tip stall or separation.

The 0.3 Mach number results for the swept-forward wing are compared
with the 0.4 Mach number swept-back wing results in figure 7. The

difference in the trends of the damping in roll for the two wing
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orientations at angles of attack above 16° is obvious as is the difference
in the levels of the rolling moment due to roll displacement parameter.

Figure 8 is a comnparison of the swept-forward and swept-hack wing
configurations at a Mach number of 0.7. The decrease in 10ll demping
of the swept-forward wing at the higher angles of asttack compared to
the swept-Dack wing is probably a result of the lower sweep angle of the
wing in the swept-forward orientation. The prohable vortex 1lift essoci-
ated with the higher sweep of the swept-back wing might e =xpected to
help maintaln the demping while a more conventional® stall might be expected
for the low leuading edge sweep of the forward-swept wing.

The effect of adding a horizontel tail to the swept-forward wing
configuration is shown in figure 0 for a Mach number of 0.3. As would
be expected there was a small increase in the roll damping as a result
of the addition of the horizontal tail to the configuration.

In order to illustrate the type of differences that might be
expected for round versus sherp leading-edge wings, the wing alone
results of reference 6 are shown in figure 10 along with the present
results. To provide s valid comparison with the presenf results, the
data of reference 6 hnave been converted to the body axis system with
the aid of the yawing data on the seme wings from referencehlE. The
roll demping results from reference_G do not include the é derivatives
as those results were measured in the old Lengley stability tunnel by
holding the model fixed and forcing the air to flow around the model
along a curved path. The wing models of reference % had NACA 0012

airfoil sections in planes normal to the leading edge and had untapered



planforms. The complete loss of damping at angles of attack sbove 19°
Tor the sharp-edped swept-forward wing configuration compared to the

60% swept-back wing configuration in figurs 10{(e) is attrituted to the
combination of a sharp-edge wing and a relatively low leading-edge

sweep of -32°. However Tor the thick round leading edge wings of figure
10(t), the swept-back wing is seen to encounter a reduction in roll
demping at the higher angles of attack relative to the swept-forward
wing. This loss in roll damping for the swept-back wing with round lcading
edges is thought to be a result of the increased local angle of attack
near the tip arising from the upwash from the forward portion of the
wing. The resulting higher tip loading for the swept-back wing would
result in tip stall occurring at a lower angle of atteck compared to

the swept-forward wing of equal sweep where the inboard section of the
wing would carry the relatively higher loading. Since the thick round
leading edge wings would not be expected to develop vortex lift, a

reduction in rell demping results.

Concluding Bemarks

An experimental investigation has been made into the roll damping
characteristics at subsonic speeds of a generalized fighterlconfiguration
model with a swept-back or a swept-forward wing. Both wings had thin,
sharp leading edge airfoils. The configuration with a 60° swept-back

wing had positive damping in roll up to the meximum test angle of attack

ORIGINAL PAGE IS
OF POOR QUALITY

11



12

o1 almost 20°. The 32° swept-forwurd wing configuration had positive
roll damping at the lower angles of abvlack but there was a decrease in
roll damping with increased angle of attack and negative roll damping

wno encountered at the highest angles of attack.



S MMARY

The aerodynamic roll damning and the yowing moment due to roll rate
characteristics were investigated at subsonic speeds Tor a model with
either swept-back or swept-forward wings. The tests were made in the
Langley high-speed T- by 10-foot tunnel for Mach numbers between 0.3
and 0.7. The configuration with a 60° swept-back wing had positive
damping in roll up to the maximum test angle of attack of almost 20°.
The 329 swept-forward wing configuration had positive damping in roll

at the lower angles of abttack but there was a decrease in damping and

negative damping in roll was measured at the highest angles of attack., .
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TABLE I - GEOMETRIC CHARACTLRIGIICS OF MODEL

Body length, cm
Body width, maximum, cm
Actual leading-edge sveep of nominal 60° sweep wing, deg

Actual leading-edge sweep of nominel -32° aweep wing, deg

Wings

Aspect rabio o v v 4 b v h e e e e e e e e e e e e
apan, cn v r e s e e s e w e e e e e e e e e e e
Mesn geometric chard, em . . + & . 4 4 4 4 4w e .
Ares, cm2 e s e e e e e e e e e e s e e e e e e e
Root chord at fuselage Juncture, cm ; e e e s e e e
Tip chord, €M .« & « & & ¢ & o o o o o« o« o 4 o = & =+ @
Alrfoil section . . . & v 4 v ¢ v 0 ¢ h v e e e e . s
Maximum thickness, percent chord, at -

Koot at fuselazge juncture e a e e e e e e

TIiP ¢ 4 v o 4 v 4 s 4 4 e 4w e e e s e e e e s

dorizontal tail

Aspect ratio . « v . o v 4 4 4 e e e e e e e e e e e
SPaN, M + v + v 4 s o 1 & e 2 4 & & s & ¢ & & o &
Leading-edge sweep, Q8 + + « + + + & s o s s 4w s s
Mean geometric chord, cm « 4 e e e e e e e w s e s
Aresn, cm2 e e e b s s s e e e s e e e e e e e e e e
Root chord at fuselage Jjuncture, cm . . + + « = « « &
Tip chord, Cm & & + v v 4 & 4 o & o s & o o 2 = &
AirToil section & v v 4 v 4 4 e e e e e e e e e e e
laximum thickness, percenﬁ chord, at -

Root &t fuselage juncture e e i e e e e e s e s

TIP & o 4 & ¢ 4 o o o s o o o o o o 2 a0 &« o o4

101.05
11.18
59.45

-32.13

2.56
5k, 36
2k, 56

1156.
29.80
6.77

circular arc

2.77
38.06
51.70
1€.23

522.6
17.92
3.59

circular arc
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Vertical Teil

Aspect ratio . . . . . . . . . . .,
Span, cm C e e s e e e e e e e
Leading-edge sweep, deg . . « . . .
Mean geometric chord, em . . . . . .
Area, cnP e h e e e e e e e v e e
Root chord at fuselage juncture, cm
Tip chord, e¢m . . « . « .+ ¢ . . .
Airfoil section . . . . . . o . . .
Maximum thickness, percent chord, at

Foot at fuselapge Junctbwe . . . .

Tip N

1.39
19.03
51.70
16.23

261.3
17.92
3.59

circular arc

T



TABLE 11 - JOMINAL TEST CONDITIONS

i e R T R

Mach number, Uynamic pressure, |Veloeity, Stagnation Beynolds Reduced frequency
| qm,kl-’a V. nec temperature { number, parameter,
m,K R k, radians
0.3 5.93 103 298 1‘563(106 0.1063 to 0.11k2
0.4 10.20 139 309 1.97 .0826 to .0938
0.7 25.33 235 308 3.02 .08L48 to .0596
ii
B
i
i
' .l
’ ;
g
B
18




Figure 1, ~ Body system of axes with coefficients, angles, and angular velpcity shown In the posilive sense.
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{a} Circular arc wing section. Configuration BVYW, wing sweep= 320
and 60°, aspect ratie = 2.56, taper ratio = 0.19,
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m=0.17

M=0,17

Angle of attack, o deg

{b} NACA 0012 wing section. Configuration W, wing sweep = +45°, aspect
ratio ='2.61, taper ratio ratio= 1.00. {(Refurence 6)

Figure 10.- Comparison of present sharp leading-edge results with mung
leading-edge results of -reference 6.
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