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INTRODUCTION

,,1

Swept-back wings have been widely used on transonic and supersonic

aircraft to delay the effects of transonic compressibility and thereby

achieve satisfactory performance at high speeds. As is well known,

swept-forward wings are also a possible solution to the transonic

compressibility problem, but the stt-uctural design and weight of swept-

forward wings has been plagued by the problem of bending-torsion di-

vergence (see references 1 and 2). However, a recent paper (reference 3)

on the use of advanced composite materials with optimized orientation

and thickness shows promise as a means of alleviating the weight penalty

previously associated with the use of swept-forward wings on high-speed

aircraft.

The objective of this study was to obtain some comparative aero-

dynamic roll damping data at subsonic speeds on swept-back and swept-

forward wings on a general research fighter configuration fuselage.

The forced-oscillation roll technique was used to determine the roll

damping and the yawing moment due to roll rate. This investigation was

conducted in the Langley high-sp. led 7- by 10-foot tunnel at Mach numbers

ranging from 0.3 to 0.7 and angles of attack from -40 to about 20°.

It should be noted that the model wing panels used in this study were

designed and constructed for tests of swept-back wing configurations

having sharp leading edges. The fact that the wing panels have circular

a.rc sections made it feasible t o utilize these existing wing panels in
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the reversed or swept-forward orientation. It must be kept in mind

however, that because of the flow separation at the sharp leading edges

`	 that this data should not be expected to be indicative of the damping

characteristics of thick, rounded leading-edge wings.

The static longitudinal and lateral-directional aerodynamic

characteristics of swept-back and swept-forward wing configurations

utilizing the same wing panels as the present study are included, in

reference 4.

Some previous tests of the roll damping of isolated swept-forward

wings at low speeds are reported on in references 5 to 7.
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SYMBOLS

The aerodynamic parameters in this report are referred to the body

f system of axes as shown in figure 1 in which the coefficients, angles

and angular velocity are shown in the positive sense. 	 These axes origi-

nate at the moment reference center which was located according to the

t^JJ

4 model drawings in figure 2.
^ir

Units of measurement are presented in the International System of

Units (SI).	 Details on t), e use of SI together with the physical constants

^y and conversion factors are given in reference 8.

7 b reference span, 0.5436 meter

)

C mean geometric chord, 0.2456 meter

f frequency of oscillation, hertz

k reduced-frequency parameter, &o/2V, radians

W free-stream Poach number
l

p angular velocity of model about, X-axis, radians/second

qm free-stream dynamic pressure, pascals

R Reynolds number based on	 c

S reference area, 0.1156 meter 

V free-stream velocity, meters/second

l

i
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X,Y,Z	 reference body axes

a	 angle of attack, degrees

B	 angle of sideslip, degrees

W	 angular velocity, 2trf, radians/second

C	 rolling-moment coefficient, Polling moment/q.Sb
l

C
n	

yalring-moment coefficient, Yawing moment/gmSb

aC

C = -3	 per radian
l^

a 

C =	 l	 per radian

d 2V

aC

C	
r^p

per radian

I  a^
g

a 

C l , - —̂per radian2p .,^	
E ^a/	
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C sin a - k 2 C	 rollini; moment due to roll displacement parameter, per radian

la	 lb

C l + C t sin a	 dampinZ-in-roll arameter, per radian
n	 R

aC
Cn =	 2 n per radian

3C
C
n -
	 °	 uer radian
3 b

2V

3C
Cn -	

n	
per radian

P	 3 2V

3C
Cn =

(

)jb

u 
z

/

perradian

P_

C  sin a - k2Cn  yawing moment due to roll displacement parameter, per
S	 P

radian

-0np	 ns
+ C sin a yawing moment due to roll rate parameter, per radian

A dot over a quantity indicates a first derivative with respect to

,
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Model component designations:

B	 body

V	 vertical tail

W	 wing

H	 horizontal tail

6
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10DEL AND TEST APPARATUS

Three-view drawings of the model with the wing in both the swept-

back and in the swept-forward configuration are shown in figure 2. The

same uncambered and untwisted wing panels with circular arc airfoil

sections were used for all configurations. The wing had. a nominal

leading-edge sweep of 60 0 in the swept-back configuration and a nominal

-32 0 leading edge sweep in the swept-forward configuration. By reversing

the wing,the half-chord sweep remains the same magnitude implying approxi-

mately the same structural span. The horizontal and vertical tail

surfaces had a leading-edge sweep of 51.70 and each of the three panels

had the same dimensions. Detailed geometric characteristics of the model

are listed in Table 1.

A photograph of the model with the wings in the swept-forward orien-

tation mounted on the sting for the forced-oscillation roll tests in

the Langley high speed 7- by 10-foot tunnel is shown in figure 3. A

description and the operating characteristics of the 7- by 10-foot wind

tunnel can be found in reference 9. A photograph of the small-amplitude

forced-oscillation roll balance is shorn in figure 4. Reference 10

contains a detailed description of the oscillatory roll balance and the

associated data-reduction procedure.

Tests

The dynamic stability parameters for the configuration with the
i

wing in the 60° sweep-back orientation were measured at Vlach numbers
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of OA and 0.7 while for the 32 0 swept-forward wing the tests were made

at 0.3 and 0.7 Mach niziber. The noiUnal values of the wind tunnel test

conditions are listed in Table 11. The range of angle of attack

available wit',i the dynamic stability sting was from about -h° to 200.

The amplitude of the roll oscillation for this investigation was about

2.5° and was determined by the mechanical throw of the actuating crank.

All of the data were ta'.en with the models oscillating at the frequency

for velocity resonance ( ee reference 10) which varied from about 6.h2

to 5.31 hertz.

To insure a turbulent boundary layer over the model, earborundum

grains were applied as three-dimensional roughness to the model nose and

along the leading edge of the wing and the tail surfaces. Tha grit size

and location were chosen based on the work in reference 11. The transi-

tion strips consisted of Ido. 120 carborundum grit applied in bands 0.16

cm wide located 2.54 cm aft of the model nose and 1.27 cm streamwise

aft of the leading°, edge of the wing and the tail surfaces.

results and Discussion

"he effect of rnch number on the dnuipin;^, in roll parameter for the

40 0 swept-back wing configuration is shown n figure a	 The swept-

back configuration had positive damping in roll over the angle of attack

range and the roil dampinr did not fall below the 0 0 angle of attack

value at any of the test, conditions. The major difference between the

results for the two Hach numbers was a peak in the roll damping at an

;f9
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i

angle of attack of 12 0 for the 0.7 Mach number data. The rolling moment

due to roll displacement parameter is included with the damping in roll

parameter in the figures for completeness since the two components of

rolling moment are measured at the same time. `1ie  usefulness of the

rolling moment due to roll displacement parameter is reduced, however,

because of the sin a multiplier in the C13 term. The parameter does

serve to indicate the trends and sign changes of the dihederal effect.

The 60 0 swept-back wing configuration in figure 5(a) is seen to have

positive dihederal effect.

The yawing moment due to roll rate parameter for the 60 0 sweep

configuration in the upper portion of figure 5(b) shows little variation

with Mach number or angle of attack. The yawing moment due to roll dis-

placement parameter in the lower part of figure 5(b) indicates there

is positive directional stability over the range of angle of attack..

The damping in roll parameter for the swept-forward wing configura-

tion is plotted in figure 6(a) for Mach numbers of 0.3 and 0.7. There

is an increase in the roll damping up to an angle of attack of 80 to

10° and then a decrease with negative roll damping (positive values of

the damping in roll parameter) at the highest angles of attack for both

Mach numbers. This decrease in r,ti11 damping is presumed to be a result

of tip stall or separation.

The 0.3 Mach number results for the swept-forward wing are compared

with the 0.4 Mach number swept-back wing results in figure 7. The

difference in the trends of the damping in roll for the two wing

9



I'	 orientation; at angles of attack above 16° i,a obvious as is the difference

in the lever, of the rolling moment due to roll displacement parameter.

Figure 8 is a comparison of the swept-forward and swept-back wing

configurations at a Hach number of 0.7. The decrease in roll damping

of the swept-forward wing at the higher angles of attack compared to

the swept-back wing is probably a result of the lower sweep angle of the

wing in the swept-forward orientation. The probable vortex lift associ-

ated with the higher sweep of the swept back. wing might be expected to

help maintain the damping while a more conventional' stall might be expected

for the low leading edge sweep of the forward-swept wing.

The effect of adding a horizontal tail to the swept-forward wing

configuration is shown in figure o for a Mach number of 0.3. As would

be expected there was a small increase in the roll damping as a result

of the addition of the horizontal tail to the configuration.

In order to illustrate the type of differences that might be

expected for round versus sharp leading-edge wings, the wing alone

results of reference 6 are shown in figure 10 along with the present

results. To provide a valid comparison with the present results, the

data of reference 6 have been converted to the body axis system with

the aid of the yawing data on the same wings from reference 12. The

roll damping results from reference 6 do not include the (3 derivatives

as those results were measured in the old Langley stability tunnel by

holding the model fixed and forcing the air to flow around the model

along a curved path. The wing models of reference 6 had IQACA 0012

airfoil sections in planes normal to the leading edge and had untapered

10
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planforms. Uie complete loss of damping at angles of attack above 190

for the sharp-edged swept-forward wing configuration compared to the

60` swept-back wing configuration in figura 10(a) is attributed to the

combination of a sharp-edge wing and a relatively low leading-edge

:weep of -32°. However for the thick round leading edge wings of figure

10(b), the swept-back wing is seen to encounter a reduction in roll

damping at the higher angles of attack relative to the swept-forward

wing. This loss in roll damning for the swept-back wing with round lcading

edges is thought to be a result of the increased local angle of attack

near the tip arising from the upwash from the forward portion of the

wing. The resulting higher tip loading for the swept-back wing would

result in til stall occurring at a lower angle of attack compared to

the swept-forward wing of equal sweep where the inboard section of the

wing would carry the relatively higher loading. Since the thick round

leading edge wings would not be expected to develop vortex lif+., a

reduction in roll damping results.

Concluding Remarks

Pn experimental investigation has been made into the roll damping

characteristics at subsonic speeds of a generalized fighter configuration

model with a swept-back or a swept-forward wing. Both wings had thin,

sharp leading edge airfoils. The configuration with a 60 0 swept-back

'	 wing had positive damping in roll up to the maximum test angle of attack

ORIGINAL PAGE IS
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oi' almost 20°. %be 32 0 ewept—forwurd wing configuration had positive

roll damping at the lower angles of attack but there was a decrease in

roll damping with increased angle of attack and negative roll damping

was encountered at the highest angles of attack.



r

SUMMARY

The aerodynamic roll damping and the yawing moment due to roll rate

characteristics were investif,ated at subsonic speeds for a model with

either swept-back ur swept-forward wings. The tests were made in the

Langley high-speed 7- by 10-foot tunnel for Mach numbers between 0.3

and 0.7. The configuration with a 60° swept-back wing had positive

damping in roll up to the maximum 'test angle of attack of almost 20°.

The 32° swept-forward wing configuration had positive damping in roll

at the lower angles of attack but there was a decrease in damping and

negative damping in roll was measured at the highest angles of attack.
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TABLE I - GEOMETRIC CHARACTERISTICS OF MODEL

Body length, cm	 101.05
Body width, maximum, cm 	 11.18

	Actual leading-edge sweep of nominal 60° sweep wing, deg	 59.45
Actual leading-edge sweep of nominal -32° sweep wing, deg	 -32.13

Wings

	

Aspect ratio . . . . . . . . . . . . . . . . . . . . . 	 2.56
Span, cm	 . . . . . . . .	 . . . . . . . . . . . . . 	 54.36

	!dean geometric chord, cm . . . . . . . . . . . . . . . 	 24.56
Area , cm2	. . . . . . . . . . . . . . . . . . . . . . 	 1156.

	Root chord at fuselage juncture, cm . . . . . . . . . 	 29.80
Tip chord, cm	 . . . . . . . . . . . . . . . . . . . .	 6.77
Airfoil section . . . . . . . . . .	 . . . . .	 circular are

Maximum thickness, percent chord, at -

Root at fuselage juncture 	 . . . . . . . . . . . . 	 6
	Tip. . . . . . . . . . . . . . . . . . . . . . . .	 4

-dorizontal tail

	

Aspect ratio . . . . . . . . . . . . . . . . . . . . . 	 2.77
Span, cm . . . . . . . . . . . . . . . . . . . 	 . .	 38.06

	Leading-edge sweep, deg . . . . . . . . . . . . . . . 	 51.70
Mean geometric chord, cm	 . . . . . . . . . . . . . .	 16.23
Area, cm2	.	 . . . . . . . . . . . .	 . . .	 . . .	 522.6
Root chord at fuselage juncture, cm . . . . . . . . 	 17.92
Tip chord, cm . . . . . . . . . . 	 . . . . . . .	 3.59
Airfoil section	 . . . . . . . . . . . . . . . . . . circular arc

Maximum thickness, percent chord, at -

Root at fuselage juncture	 . .	 . . . . . . . .	 6

Tip. . .	 .	 .	 .	 .	 .	 .	 . . .	 .	 .	 .	 . .	 . .	 4

ORIGPQAL PAGE IS
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Vertical Tail

Aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . 	 1.39

Span, cm	 . . . . . . . . . . . . . . . . . . . . . . . . . 	 19.03

Leading—edge sweep, deg	 51.70

Mean geometric chord, cm . . . . . . . . . . . . . . . . . . 	 16.23
2

Area, cm`	. . . . . . . . . . . . . . . . . . . . . . . . . 	 261.3

Root chord at fuselage juncture, cm . . . . . . . . . . . . 	 17.92

Tip chord, cm	 . . . . . . . . . . . . . . . . . . . . . . .	 3.59

j	 Airfoil section	 circular arc

Maximum thickness, percent chord, at —

	

Root at fuselage juncture . . . . . . . . . . . . . . . . 	 6

Tip.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4
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TABLE U - NOMINAL TEST CONDITIONS

Mach number, Dynastic pressure, Velocity, Stagnation Reynolds Reduced frequency

M q.,kPa V,m/sec temperature number, parameter,
T,lt R k, radians

0.3 5.93 103 298 1.56x106 0.1063 to 0.1142

o.4 10.29 139 309 1.97 o8?_6 to .0938

0.7 25.33 235 3o8 3.02 .0848 to .0596

s
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