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SUPERSONIC DYNAMIC STABILITY  CHARACTERISTICS 

O F  A SPACE  SHUTTLE  ORBITER 

Delma C. Freeman, Jr., Richmond P. Boyden, 
and E. E. Davenport 

Langley  Research  Center 

SUMMARY 

Supersonic  forced-oscillation  tests of a 0.0165-scale  model of a modified  089B  shut- 
tle  orbiter  model  have  been  made  in  the  Langley  Unitary  Plan wind tunnel.  These  tests, 
which  have  provided  the  only  measured  orbiter-damping  data  for  the  shuttle  program, 
were  made  for  several  configurations  over a Mach  number  range  from 1.6 to  4.63,  mea- 
suring  the  pitch,  roll,  and yaw damping.  The  tests  also  measured the normal  force due to 
pitch  rate  and  the  cross  derivatives, yawing  moment  due to  roll   rate and  rolling  moment 
due  to  yaw  rate.  The  tests  covered  an  angle-of-attack  range  from 0' to 30'. Static  tests 
have  been  made  for  the  same  configurations  and  test  conditions, and these  data are pre-  
sented  to  verify  the  dynamic  test.results.  The  measured  dynamic  data and three-degree- 
of-freedom  longitudinal  and  lateral  motion  equations  were  used  to  compute  the  period  and 
damping of the  basic  unaugmented  vehicle  along  the  entry  trajectory. 

The  results of this  investigation  demonstrated  that  the  model  exhibits  positive  damp- 
ing  in  pitch  throughout  the  test  angle-of-attack  range  for  Mach  numbers  from 1.6 to 2.86. 
For a Mach  number of 3.96 the  model  exhibited a region of pitch  undamping  at  angles of 
attack  near 16'. The  model had  positive  damping  in  yaw  throughout  the  test  angle-of- 
attack and  Mach number  range.  The  rolling  oscillation-test  results  show  that  the  model 
exhibited  positive roll damping  for  the  entire  angle-of-attack  range  for all Mach  numbers 
except 2.36 where  there  was  undamping  at  angles of attack  above 26'. 

INTRODUCTION 

As  par t  of the  space  shuttle  development  effort, a program  has  been  initiated  at  the 
National  Aeronautics  and  Space  Administration (NASA) Langley  Research  Center  to  meas- 
ure  experimentally  the  dynamic  stability  derivatives of the  shuttle  orbiter  through  the 
entry  to  the  landing  phases of flight.  The  measured  derivatives  were  then  used  to  predict 
the  vehicle  dynamics  for  the  orbiter with  an  unaugmented  control  system.  Since  neither 



theoretical  estimates  nor  experimental  data exist over a wide  Mach  number  and  angle-of- 
attack  range,  the  program  was  designed to provide  experimentally  measured  damping  data 
from  subsonic to hypersonic  speeds  at  angles of attack  up to 30°. 

As part  of this  study,  supersonic  forced-oscillation  tests of a 0.0165-scale  model of 
a modified 089B shuttle  orbiter  model  were  conducted  in  the  Langley  Unitary  Plan wind 
tunnel.  These  tests  were  conducted  for several configurations  over a Mach  number  range 
f rom 1.6 to 4.63, measuring  the  pitch,  roll,  and  yaw  damping.  The tests also measured  the 
normal  force  due  to  pitch  rate  and  the  cross  derivatives,  yawing  moment  due  to  roll rate 
and  rolling  moment  due  to  yaw  rate.  Static  tests  were  also  run  for  the  same  configura- 
tions and test  conditions.  These  data are presented  to  verify  the  dynamic  test  results. 
The  period  and  damping of the  basic  configuration  and  its  sensitivity  to  variations of the 
pr imary and  cross-damping  derivatives  were  computed  using  three-degree-of-freedom 
longitudinal  and lateral motion  equations  to assess the  importance of the  damping  param- 
eters  in  predicting  vehicle  flight  characteristics. The results  for  the  corresponding  study 
of the  shuttle  orbiter  for  Mach  numbers of 0.3 and 1.2 are contained  in  reference 1, and 
the  hypersonic  results  are shown in  reference 2. 

SYMBOLS 

The  static  longitudinal  data are referred  to  the  stability-axis  system  and all other 
data are referred  to  the  body-axis  system.  (See  fig. 1.) The  origin of the axes was 
located  to  correspond  to  the  center-of-gravity (c.g.) positions  shown  in  figure 2. A dot 
over a quantity  indicates a first  derivative with respect  to  time. 

b  reference  span,  meters 

CD drag  coefficient 

C - - -  acD, per   degree 
D~ e a6e 

cL lift  coefficient 

rolling-moment  coefficient, Rolling  moment 
qmSb 
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CZ1; 
- 
" , per  radian 

a(<) 4v 

CZ + C . sin a! 
p IO 

damping-in-roll  parameter,  per  radian 

aCZ 
CZ;. 

cZr - % cos a! 

- 
" , per  radian 

a($) 

rolling  moment  due  to  yaw  rate  parameter,  per  radian 

acl 
aO 

- -, per  radian o r  per  degree - 

C cos a! + k Cl. 
r 

C s in  a! - k2Clp 

2 
% 

IO 

effective  dihedral  parameter,  per  radian 

rolling  moment  due  to  roll  displacement  parameter,  per  radian 

pitching-moment  coefficient, Pitching  moment 
q,sc 

c"q 
= -  , per  radian 

a(%) 2 v  

C m i  - " 

Cmq + Cms damping-in-pitch  parameter,  per  radian 

cmcY 
- 
" acm, per  radian 

aa! 

Cmh - -  per   radian - 
a (LE) 2v 
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2 / 

CmQ, - k Cm;l oscillatory  longitudinal-stability  parameter,  per  radian 

'm6 e a6 e 
- 
" per  degree 

CN normal-force  coefficient, qC2 
Normal  force 

cNq + CNb normal  force  due  to  pitch  rate  parameter,  per  radian 

- aCN 
" 

8, 
, per  radian 

CN, - k2C normal  force due  to  pitch  displacement  parameter,  per  radian 
N;r 

Cn yawing-moment  coefficient, Yawing  moment 
qmSb 

cnP + cnB sin 
yawing  moment  due  to  roll  rate  parameter,  per  radian 

'nr 
- 
" , per  radian 

cnr - cnB cos a! 
damping-in-yaw  parameter,  per  radian 
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cnP 
'Cn 
a0 - -, per  radian o r  per   degree - 

CnB COS cx + kzCn. r oscillatory  directional-stability  parameter,  per  radian 

cnO sin - cn- 
2 yawing  moment  due  to  roll  displacement  parameter,  per  radian 

P 

CY 

yP 
C 

- 
C 

FD 

FL 

f 

I* ,Iy ,I z 

Ixz 

k 

I 

M 

MX 

MY 

MZ 

P 

side-force  coefficient,  Side  force 
qoos 

- 
" per  radian or per  degree 

a0 

reference  chord,  meters 

drag  force,  newtons 

lift  force,  newtons 

frequency of oscillatioll,  hertz 

moments of inertia about X, Y,  and Z body axes,  kg-m 2 

product of inertia,  kg-m 2 

reduced-frequency  parameter (wc/2V in pitch, wb/2V in roll  and  yaw), 
radians 

model body length  (nose  to  flap  hinge  line),  meters 

f ree-s t ream Mach  number 

rolling  moment,  newton-meter 

pitching  moment,  newton-meter 

yawing  moment,  newton-meter 

period,  seconds 
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P 

4, 

R 

r 

S 

t 

t l /2  

V 

P 

~ B F  

6e 

w 

angular  velocity of model  about X-axis, radians/second 

angular  velocity of model  about  Y-axis,  radians/second 

free-stream  dynamic  pressure,   pascals 

Reynolds  number  based on body length 

angular  velocity of model  about Z - a x i s ,  radians/second 

reference  area,   meters  2 

time,  seconds 

time  to  damp  to  half-amplitude,  seconds 

free-stream  velocity,  meters/second 

body reference  axes 

stability  reference axes 

distance  along  X-axis,  cm 

distance  along  the  Z-axis  to  center of gravity,  cm 

angle of attack,  degrees o r  radians 

angle of sideslip,  radians 

body flap  deflection,  positive when trailing  edge is down, degrees 

elevon  deflection,  positive when trailing  edge is down, degrees 

angle of roll,   radians 

angular  velocity, 277f, radians/second 
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APPARATUS AND MODEL 

A  drawing of the  0.0165-scale  model  used  in  the  investigation is presented  in  fig- 
u re  2. The  model  had a double-delta  planform wing  with an 81° sweep on the fillet and a 
45O leading-edge  sweep on the  main wing. The  model  had a vertical   tai l  with a rudder 
that  could  be  deflected  for  yaw  control  and  flared to  provide a speed  brake.  (See  fig. 3.) 
Wing trailing-edge  control  surfaces  were  used  to  provide both  pitch  and roll  control,  and 
a body flap  was  used  to  produce  longitudinal  trim. An orbital  maneuvering  system (OMS 
pods),  located as shown in figure 2, was removed  for a portion of the tests. 

The  supersonic static and  dynamic  force  tests  were  conducted  in  the  Langley  Unitary 
Plan wind tunnel.  Photographs of the  model  mounted  in  the  tunnel  for  forced-oscillation 
tests are presented  in  figure 4. 

Forced-Oscillation  Balance  Mechanisms 

Pitch  and  yaw.-  A  photograph of the  small-amplitude  forced-oscillation  balance  used 
for  the  pitch  and the  yaw tes t s   i s  shown  in figure  5(a). An offset  crank which fits  into  the 
balance  crosshead  mechanism is driven  in a rotary  motion  by a variable-frequency  elec- 
tr ic  motor.   The  offset   crank  serves  to  oscil late the  movable  portion of the  balance  (and 
thereby  the  model)  about  the  pivot axis in  an  essentially  sinusoidal  motion.  The  amplitude 
of the  motion is dependent on the  throw of the  particular  crank  used.  The  allowable  range 
is from 0.5' to 2O. An amplitude of about 1' was  used  for both the  pitch  and  the  yaw  tests 
of this  study. 

The  instrumented  beams  which  measure the  torque required to oscillate the  model 
are  located  between  the  pivot  axis  and  the  model  mounting  surface.  This  torque-bridge 
location  eliminates  the  pivot-friction  characteristics  from  the  model  system  and  thereby 
removes the  need  to  correct  the  data  for  varying  pivot  friction  associated  with  changing 
aerodynamic  load. Although this  bridge is physically  forward of the  pivot axis, all torques 
are   measured with respect  to the  pivot axis. 

A mechanical  spring,  which is an  integral   par t  of the  fixed-balance  support, is con- 
nected  to  the  oscillation  balance  forward of the  torque  beams by means of a flexure  plate. 
The  plate is electron-beam  welded  to  both  the  front of the  spring  and  the  forward  portion 
of the  oscillation  balance.  Welding  the  spring  in  this  manner  minimizes  the  mechanical 
friction  which  the  use of mechanical  fasteners would create.  A  strain-gage  bridge  mounted 
on the  mechanical  spring  provides a signal  proportional  to  the  model-angular  displace- 
ment  with  respect to the  sting.  Although  the  forced-oscillation  balance  may  be  oscillated 
through a frequency  range  from  about 1 Hz to 30 Hz, the  most  accurate  measurement of 
the  damping  coefficient is obtained a t  the  frequency-of-velocity  resonance as shown  in 
reference 3. 
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Strain-gage  bridges  also  are  located on the  oscillation  balance  torque  beams  to 
measure  normal  force  and  rolling  moment  in  the  pitching  and  yawing  modes,  respectively. 

- Roll.-  The  small-amplitude  oscillatory-roll  balance  used  for  the  rolling  tests is 
shown  in  figure  5(b).  The  basic  principles of operation of the  oscillatory  roll  mechanism 
a r e  the same as those  for  the  pitch-yaw  mechanism  previously  discussed. An electric 
motor  with  eccentric  drive  oscillates  the  forward  movable  portion of the  balance  and 
model  in  an  essentially  sinusoidal motion.  The  model is rigidly  forced  in a fixed 2.50 
amplitude  oscillation  about  the  sting  axis  at a variable  frequency. A mechanical  torsion- 
spring  internal  to  the  balance is attached  to  the  front of the  strain-gage  balance  section  to 
permit the  model  to  be  oscillated a t  the  frequency  for  velocity  resonance. In this  way,  the 
mechanical  torsion  spring,  in  addition to any  aerodynamic  spring  term C s in  CY, balances 
out the model  inertia.  The only  torque  then  required to oscillate  the  model a t  that  par- 
ticular  frequency is equal to the  torque  caused by the  aerodynamic  damping.  (See  ref. 3 . )  
The  strain  gages  are  located  forward of all the  bearings  and  other  friction-producing  com- 
ponents. In addition to rolling  moment,  the  torque  beams  are  instrumented  with  strain- 
gage  bridges to measure yawing  moment  due  to  rolling. A strain-gage  bridge is mounted 
on the  mechanical  torsion  spring to  provide a signal  proportional to the  model  angular  dis- 
placement  in  roll. 

IP 

TESTS 

The  forced-oscillation  tests  were  conducted to determine  the  pitch  damping 
(Cmq + C,,), yaw damping - Cni   cos  CY)) and  sin a); t:e 
change  in  normal  force due to pitch  rate  parameter  cross  derlva- 
tives:  yawing  moment  moment  due  to 
yawing  velocity 
measured  for a pitch  amplitude of 1' for the natural  frequencies of the  model-balance 
combination  corresponding to values of the  reduced-frequency  parameter k of 0.004 to 
0.0087. The  dynamic  lateral-stability  derivatives  measured  during  the yaw oscillation 
tests  were  for a yaw amplitude of lo for  frequencies  corresponding to values of the 
reduced-frequency  parameter k of 0.0062  to  0.0137. The  dynamic  derivatives  measured 
during  the  roll  oscillation  tests  were  measured  for  an  amplitude of  2.5O for  frequencies 
corresponding  to  values of k from 0.0150  to  0.0257. Pitch  and yaw dynamic  tests  were 
conducted  with two representative  center-of-gravity  (c.g.)  locations  (fig. 2) and resu l t s   a re  
presented  for  both  positions. A description of the  data  reduction  procedure is presented 
in the appendix. 

The  static  tests  were conducted to determine  the  static  longitudinal-stability  and 
lateral-stability  characteristics of the  model to aid  in  the  interpretation of the  dynamic  test 
results.  Both  the static  and  dynamic  force  tests  were  conducted  over  an  angle-of-attack 
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range  from  approximately -lo to 30°. The  static  lateral-stability  characteristics were 
determined  from  incremental  differences  in  Cn,  Cz,  and  Cy  measured  over  the  angle- 
of-attacli  range at   f ixed  angles of sideslip of Oo and 2'. The  test  conditions  were as 
follows: 

I 

Mach 
number 

1.60 
1.90 
2.36 
2.86 
3.96 
4.63 

q,, 
Pa 

23 030 
22 890 
26  860 
23 700 
17  620 
13  930 

1 
3.55 x 106 

4.43 

For the  Mach numbers of 1.60 and 1.90, the  model  was  tested  with  transition  fixed by 
the  application of No. 60 gri t ,  3.05 cm  aft on the  nose  and 1.02 cm  streamwise on the  wing 
and  vertical tail. For  the  higher  Mach  numbers (M = 2.36 to M = 4.63), No. 45 gr i t  
was  used in the  same  locations.  The  static  force  data  presented  have  been  corrected  for 
sting  bending,  and all drag  data  presented  are  total  drag in that  the  base  drag h a s  not  been 
sub  trac te d out. 

CALCULATIONS 

Linearized  three-degree-of-freedom  equations of motion, as presented  in  refer- 
ence 4, were  used to calculate  the  period  and  damping of the  phugoid,  short-period,  and 
other  oscillations:  the  damping of the  longitudinal  aperiodic  modes:  the  period  and  damp- 
ing of the  Dutch-roll  oscillations:  and  the  damping of the lateral  aperiodic  modes  for the 
basic unaugmented  vehicle. Al l  the  stability  calculations  and  motion  studies  were  made 
with  the  use of the  measured  stability  derivatives  combined  with  the  static  longitudinal 
and  lateral  data  and  the  mass  properties  presented  in  tables I and 11, respectively.  These 
data were obtained  from  the  shuttle  data  base.  Calculations  were  made  for  the  discrete 
flight  conditions  listed  in  table III. These  calculations  were  obtained  from the nominal 
entry  trajectory  presented  in  figure 6. 

RESULTS AND  DISCUSSION 

To  verify  and  interpret  the  results of the  forced-oscillation  tests, a se r i e s  of s ta t ic  
force  tests  were  made  using  the  same  model  and  test  conditions  that  were  used  for  the 
dynamic  tests. Both the  static  and  dynamic  tests  were  conducted  with  the body flap on and 
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off in  order  to  establish  possible  sting  effects  induced by the  close  proximity of the flap  to 
the  sting.  These  results  show no apparent  sting effects on  the  measured  vehicle  damping 
characterist ics.  

A brief description of the figures is as follows: 
Figure 

Effect of body flap  on static longitudinal  characteristics of the  model . . . . . . .  7 
Effect of vertical  tail on static lateral characterist ics of the  model . . . . . . . .  8 
Effect of body flap on static lateral characterist ics of the  model . . . . . . . . .  9 
Effect of center-of-gravity  (c.g.)  position on damping-in-pitch 

parameter  and  on  oscillatory  stability-in-pitch  parameter . . . . . . . . . . .  10 

oscillatory  stability-in-pitch  parameter . . . . . . . . . . . . . . . . . . . . .  11 
Effect of body flap  on  damping-in-pitch  parameter  and  on 

Effect of elevon  and body flap  deflection on damping-in-pitch 
parameter  and on the  oscillatory  stability-in-pitch  parameter . . . . . . . . .  12 

Effect of OMS installation  on  damping-in-pitch  parameter  and on 
oscillatory  stability-in-pitch  parameter . . . . . . . . . . . . . . . . . . . . .  13 

Effect of center-of-gravity  (c.g.)  position on normal  force due  to pitch  rate 
parameter  and  normal  force due  to  pitch  displacement  parameter . . . . . . .  14 

Effect of body flap on normal  force due to pitch rate  parameter  and 
normal  force due  to  pitch  displacement  parameter . . . . . . . . . . . . . . .  1 5  

Effect of elevon  and body flap  deflection on normal  force due  to  pitch rate  
parameter  and  on  normal  force due to pitch  displacement  parameter . . . . .  16 

Effect of OMS on normal  force due  to  pitch rate  parameter  and on normal 
force due to pitch  displacement  parameter . . . . . . . . . . . . . . . . . . .  17 

and on oscillatory  directional-stability  parameter . . . . . . . . . . . . . . . .  18 

oscillatory  directional-stability  parameter. . . . . . . . . . . . . . . . . . . .  19 

oscillatory  directional-stability  parameter . . . . . . . . . . . . . . . . . . .  20 

yaw rate  parameter  and on effective  dihedral  parameter . . . . . . . . . . . .  21 

and on effective  dihedral  parameter . . . . . . . . . . . . . . . . . . . . . . .  22 

parameter  and on effective  dihedral  parameter . . . . . . . . . . . . . . . . .  23 

moment  due to roll  displacement  parameter . . . . . . . . . . . . . . . . . .  24 

Effect of center-of-gravity  (c.g.)  position on damping-in-yaw  parameter 

Effect of vertical tail on damping-in-yaw parameter  and on 

Effect of OMS installation on damping-in-yaw parameter  and on 

Effect of center-of-gravity  (c.g.)  position on rolling  moment  due  to 

Effect of vertical tail on rolling  moment due to yaw rate parameter 

Effect of OMS installation on rolling  moment due  to  yaw ra te  

Effect of vertical  tail on damping-in-roll  parameter  and on rolling 
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Figure 
Effect of  OMS installation on damping-in-roll  parameter  and  on 

rolling  moment due  to roll  displacement  parameter . . . . . . . . . . . . . . .  25 
Effect of vertical  tail on  yawing  moment  due  to rol l   ra te   parameter  

Effect of OMS installation on yawing  moment  due  to  roll  rate  parameter 
and  on  yawing  moment  due  to  roll  displacement  parameter . . . . . . . . . . .  26 

and on  yawing  moment  due  to roll  displacement  parameter . . . . . . . . . . .  27 
Effect of static  margin on computed  vehicle  pitch  damping . . . . . . . . . . . . .  28 
Effect of pitch  damping on calculated  vehicle  damping . . . . . . . . . . . . . . .  29 
Effect of center-of-gravity (c.g.) position on calculated 

lateral  period  and  damping . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
Effect of yaw damping  on  calculated  vehicle  damping . . . . . . . . . . . . . . . .  31 
Effect of yawing  moment  due  to  rolling  velocity on 

calculated  vehicle  damping . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
Effect of roll  damping  on  the  calculated  vehicle  damping . . . . . . . . . . . . . .  33 
Effect of rolling  moment  due  to  yawing  velocity on 

calculated  vehicle  damping . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

Static  Longitudinal  Characteristics 

The  static  longitudinal  characteristics of the  model  with  and  without  the body flap 

(LF = 0 O) are presented  in  figure 7. Removing  the body flap  resulted  in a small  destabi- 
lizing  effect  which  increased  with  angle of attack  and  decreased  with Mach  number. 

Static  Lateral  Characteristics 

The  static  lateral  stability  data  for the model are  presented  in  f igures  8  and 9. 
These  data  show  the  effect of vertical  tail and body flap,  respectively.  The  results show 
the expected  trends  in  directional  stability Cn and  dihedral  effect -ClP for  the 
removal of the  vertical  tail  and  also show  the loss of effectiveness  with  increasing  angle 
of attack  until  the  vertical tail becomes  ineffective at an  angle of attack  above 14' to 16'. 
This  loss of effectiveness  has  been  observed  in  tests of similar  configurations  (ref. 5). 
Installation of the body flap had  no effect on the  static  lateral   characterist ics of the  model. 
(See  fig.  9.) 

P 

Pitching  Oscillation  Tests 

The  oscillatory  stability  parameters  measured  in  the  pitching  oscillation  tests at 
Mach  numbers of 1.6,  1.9, 2.36, 2.86, 3.96, and 4.63 are   presented  in   f igures  10  to 17. 
The  results of damping tests conducted  with  the  most  forward (0.651) and  most aft (0.672) 
center-of-gravity  locations are compared  in  figure 10. These  resul ts  show  that  the effect 
of center-of-gravity (c.g.) position  on  pitch  damping was  small  and  produced  an  increment 
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in Cm, - k2Cmg  compatible  with  the  magnitude of the  center-of-gravity  shift. Figure 10 
also  contains  comparisons of the oscillatory  longitudinal-stability  parameters  with Cm, 
determined  from  the  results of the  static  tests.  There is good agreement   a t  all tes t  
Mach  numbers. 

In general,  the  model  exhibited  positive  damping  (negative  values of Cm + Cmb)  
q 

throughout  the  test  angle-of-attack  range  for  Mach  numbers of 1.6  and 2.86; however, 
rather  abrupt  nonlinearities  occurred  for all Mach  numbers  from 2.36 to 4.63,  and 
at Mach  numbers of 3.96 and  4.63  (figs. lO(e) and  10(f))  regions of pitch  undamping 
occurred,  At  Mach 3.96 the  region of dynamic  instability  encompassed  the  nominal  entry 
angle-of-attack  range  for  that Mach  number.  These  nonlinearities  in  pitch  damping  are 
also  reflected  in  the  normal-force  coefficients. (See figs.  14(e)  and  14(f).)  Figure 11 
shows  that  removing  the body flap  tended to reduce  the  magnitude of the nonlinearities  in 
pitch  damping as did  removal of the OMS pods  (fig.  13).  These  influences of the body flap 
and OMS on the  pitch  damping  indicate  that  some  induced  effects  cause a change  in  the 
loading  over  the  wing  and aft portion of the body. 

Figure  12  shows  the  effects on pitch-damping  characteristics of deflecting  the body 
flap  and  elevons  downward  for  longitudinal  trim of the orbiter with  the  aft  center-of- 
gravity  location (0.671). The  data  show  essentially  the  same  trends  in Cmq + CmG as 
was discussed  previously;  however,  deflection of the  elevons  and body flap  tended  to 
reduce the  magnitude of the  dynamic  instability  near  the  entry  trim  angle of attack (16' 
to 18') a t  Mach 3.96 (fig. 12(d)). 

Presented in  figures  14  through  17  are  the  changes  in  normal  force due to  pitching 
velocity ( C N ~  + CN&). Figure 14  shows a comparison of the  in-phase CN, - k2cN;, with 
CN, determined  from  the  static  test  results.  There is good agreement  between  the 
static  and  dynamic  results.  The  normal  force due  to pitching  velocity  exhibits  the non- 
linearities  that  were  pointed  out  in  the  discussion of the  pitch  damping. 

Yawing Oscillation  Test  Results 

The  oscillatory  stability  parameters  measured  in  the yawing  oscillation  tests  are 
presented  in  figures  18 to 23. The  in-phase  and  out-of-phase 
(Cnr - C n j   c o s  a! parameters   a re  given  in 20. Data  showing  the 
effect of varied of gravity  (c.g.) on the  yaw-damping parameter (Cnr - CnB cos .I) 
are presented  in  figure 18. A comparison of the  in-phase  parameter (Cnp cos CY + k Cn;) 
and  the Cn cos CY computed  from the static  tests  for the  forward  center of gravity is 
also included. There is good agreement  between  the  static  and  dynamic  results  throughout 
the  test  angle-of-attack  and  Mach  number  range.  The  model  exhibited  positive yaw damp- 

2 

P 

Cnr - C n i   c o s  throughout  the test  angle-of-attack  and Mach  number  range 
except  at  the  highest  angle of attack at a Mach  number of 2.86 (fig. 18(c)). 

12 



The effect of the  vertical tail on  the  yaw  damping is presented  in figure 19. Over 
the  entire  range of supersonic  Mach  numbers  the  damping  increment of the  vertical tail 
is small  and  poorly  defined;  however,  the  in-phase  derivative  does  show a definite tail 
contribution  to static stability.  The  reason  for  this  lack of contribution of the  vertical 
tail to the  yaw  damping is not  understood.  Hypersonic tests of this  same  configuration at 
Mach 8.0 (ref. 2) show a similar  result.  Even though  the  vertical tail contributes to  yaw 
damping .at 0' angle of attack, at CY'S above 2' this  increment  disappears  indicating 
that  there are some effects of the  complex  shock  patterns on the aft portion of the body on 
the flow in  the  region of the  vertical tail. This lack of contribution of the  vertical tail to 
yaw damping  has  been  seen  in  the  results of previous tests reported  in  references 6 and 7,  
respectively. 

Data  showing  the  effect of the OMS pods on the  yaw damping are presented  in fig- 
u r e  20. These  data  show  that  the OMS has  essentially no effect  on yaw  damping. These 
contrast  with  results of the  pitch  test  where  there  were  significant  nonlinearities  intro- 
duced  in  the  pitch  damping by the OMS pods (fig. 13). 

The  rolling  moment  due to  yawing-velocity  parameter  Clr - C cos a! is presented ( l P  ) 
in  figures  21 to  23. A comparison of the  in-phase C cos a! + k2C  with C cos a! 

computed  from  the  static  data  is  presented  in  figure 21. These  data show  that 
Clr - C * cos a! is slightly  positive a t  a 0' angle of attack  and  increases with increased 
a! for all Mach numbers  except 2.36 and 2.86. At  these  Mach  numbers Czr - Czj  cos  CY 

is negative at angles  of  attack  above 26'. The OMS and  vertical tail appear  to  have  very 
little  effect on this  parameter  (figs. 22 and  23). 

ZP Zi! ZP 

ZP 

Rolling  Oscillation  Test  Results 

The  oscillatory-stability  parameters  measured  in  the  rolling  oscillation  tests are 
shown  in  figures 24 to 27. Data  showing  the  effect of the  vertical tail on the  roll  damping 
(Clp + CZI s in  a!) are presented  in  figure  24,  together with a comparison of the in-phase 
parameter Cz s in  a! - k2Cz6). The Czp sin a! is computed  from  the  static  test  results. 
The  model  exhibited  positive  damping  negative  values of Clp + Czb sin a! for  the  entire 
angle-of-attack  range  for all Mach  numbers  except  at 2.36 where  there  was  some  undamp- 
ing  at  angles of attack  above 260. The  roll  damping  was,  in  general, fairly linear  with 
angle of attack  for  the  test  Mach  number  range.  There is a small  definable  increment  in 

( p  
( ) 

czP 
+ Cz; sin a! due  to  the  vertical  tail  at  angles of attack  below 20' a t  all Mach numbers. 

This  increment  then  decreases  at  Mach  numbers of 3.96 and 4.63. Data  presented  in  fig- 
u r e  25 show  that  removing  the OMS pods  had  very  little  effect  on  the  roll  damping. 

The yawing  moment  due  to  rolling  velocity (Cnp + CnB s in  a! measured  in the rol l  
t es t s  is presented  in  figures 26 and 27.  A comparison of the  in-phase C s in  a! - k2Cni 
with  the static Cn  sin a! is also  presented  in  figure 26. The  resul ts  show  that  for  the 

) 
"P 

P 
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complete  configuration at Mach  numbers of 1.6 and 1.9,  the parameter  C + C n j   s i n  CY 

was  nonlinear  and  positive  over  the  test  angle-of-attack  range.  At Mach numbers of 2.36 
and  higher , + Cna  sin CY was  negative at angles of attack  above 12'. The  data of 
figure 26 also show a definable  vertical-tail  contribution  to C + Cn sin a over  most 
of the  angle-of-attack  range.  Figures  27(c),  27(d),  and  27(e)  indicate  that  the OMS pods 
significantly  reduced  the  magnitude of Cn + Cn s in  a a t  Mach  numbers  above 2.36, 
but  the  exact  cause of this  reduction  could  not  be  determined. 

nP 

c"P 
"P P 
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MOTION STUDY ANALYSIS 

In order  to assess the  impact of the  results  measured  in  the  forced-oscillation  tests, 
three-degree-of-freedom  longitudinal  and  lateral  motion  equations  have  been  used to cal- 
culate  the  vehicle  longitudinal  and  lateral  period  and  damping.  These  analyses  were  based 
on (1) the measured  dynamic  derivatives  with  the d! and p' terms  assumed  zero,  
(2) static  data  presented  in  table I, and  (3)  vehicle mass   propert ies  as given  in  table 11. 
The  calculations  were  made  for  the  basic  airframe  in  that no stability  augmentation  was 
input.  Although  the  vehicle  was  designed to fly in  the  active  control  mode,  an  analysis of 
the  unaugmented  vehicle  characteristics  indicates  the  existence of significant  anomalies 
that  must be taken  into  consideration  in  the  vehicle  flight-control  system  design. 

Longitudinal  Analysis 

Because of the  requirements  for a large  center-of-gravity  travel  for the shuttle 
orbiter (65  to  67.5 percent or 6.8 percent E ) ,  the effect  of static  margin on the  vehicle 
longitudinal  oscillatory  and  aperiodic  modes  was  computed.  These  results are   presented 
in  figure 28. For  these  analyses the  damping  was  assumed to vary  linearly  between  the 
center-of-gravity  (c.g.)  positions  tested.  The  calculations  have  been  made  for  Mach  num- 
be r s  along  the  vehicle  entry  trajectory (fig. 6) of 2.0, 3.0, 4.0, and 5.0. At  Mach  numbers 
of 2.0 and 3.0 (fig.  28(a)) for the  forward  center of gravity  (65-percent I )  where  the 
vehicle  has  static  stability,  the  results show  the characterist ic  short   period  and phugoid 
oscillation. As the  center of gravity  moves  aft  and the  vehicle  becomes  statically 
unstable,  the  short  period  and phugoid  oscillation  breaks  down,  and  the  roots of the  sta- 
bility  quartic  combine  to  form a third  oscillation  and two aperiodic  modes, one of which 
is unstable. For  the  high  supersonic  Mach  numbers (M = 4.0 and M = 5.0), the  model 
was  neutrally  statically  stable  at  the  forward  center of gravity,  and the divergent  aperiodic 
mode  for  the  aft  center of gravity (0.6751) had a value of 1 tl/2 of -0.75. This  value 
corresponds to a time to  double  amplitude of 1.33 seconds.  These  results  show the  unsta- 
ble  aperiodic  mode  to  be  the  main  concern  and  the  unstable  aperiodic  mode is associated 
directly  with  the  vehicle  static  stability  at  the  aft  center of gravity.  The  feasibility of 
flying  this  level of instability  would  depend  directly  on  the  ability to determine  the  vehicle 
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attitude  accurately  enough to prevent  the  divergence  from  building to a level of pitch 
acceleration  which  the  aerodynamic  control  could not overcome.  Flight  with  an unaug- 
mented  control  system  with  this  level of instability would be difficult. 

In order  to determine  the  importance of the  pitch-damping  derivative C on 
the  vehicle  dynamics,  calculations  have  been  made  to  determine  the  effects of varying 
this  parameter  plus or  minus  an  order of magnitude,  and  portions of these  results are 
presented  in  figure 29. The  results  from  the  calculations  at  the  supersonic  Mach 
numbers show  that  the  damping of the  short  period  oscillation is proportional  to  the 
pitch  damping.  Increases  in  Mach  number  decreased  the  effect of the  damping on the 
vehicle  characteristics. 

"q 

Lateral  Analysis 

The  effects of center-of-gravity  (c.g.)  position  and  variation of the derivatives 
Cn,, Cnp7  Czp,  and  Clr on the  calculated  period  and  damping of the  vehicle  lateral 
oscillatory  and  aperiodic  modes  are  presented  in  figures 30 to 34. The  solution of the 
lateral stability  quartic show that  for  the  measured  values of damping  the  vehicle  exhib- 
ited the characteristic  Dutch-roll  oscillation  throughout the  Mach  number  range  with a 
roll-spiral  oscillation  at Mach numbers of 2.0 and 3.0; these  analyses  also  showed the 
uncombined  roll  and  spiral  modes a t  the  higher Mach numbers.  The  effects of center-of- 
gravity  position on  the lateral  period  and  damping  are  presented  in  figure 30. The  only 
significant  result  in  these  data  is  that  at a Mach  number of 4.0, as the  center of gravity 
moved  aft,  the  roll  mode  and  the  spiral  mode  combined to form the roll-spiral  oscillation. 
References 8 and 9 indicate  that  the  formation of the  oscillation  can  have  some  marked 
effects on the  vehicle  flyability  making  it  difficult  to  maintain a given  heading. 

Yaw derivatives.- ~- Increasing o r  decreasing  the yaw damping  (fig. 31) from the  value 
obtained  from  the  tests  caused  the  roll-spiral  oscillation to break down into two aperiodic 
modes.  The  roll  mode  was  very  sensitive to the variation of Cn, and  was  directly  pro- 
portional to values of Cn,, becoming  increasingly  stable  with  increased  damping  and 
increasingly  unstable  with  negative  damping.  Changes  in  Cnr  had  essentially no effect 
on  the  Dutch-roll  oscillation. 

The  effect of Cn  on  the  vehicle  lateral  period  and  damping is presented  in  fig- 
P 

u re  32. These  results show  that  increasing  negative  values of C result  in  the  break- 
down of the  roll-spiral  oscillation  with a slightly  unstable  spiral mode. Increasing  Cn 
caused  the  roll-spiral  oscillation  to  become  slightly  unstable at the  higher  positive  values 
of Cnp. Changes  in C also  affected  the  Dutch-roll  oscillation  with  positive  increases 
in C resulting  in a more  damped  oscillation. 

"P 
P 

"P 
"P 
Roll  derivatives.-  The effect of roll  damping C on the  calculated  vehicle  period ZP 

and  damping is presented  in  figure 33. The  Dutch-roll  oscillation was extremely  sensitive 
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to the  value of  Cz with  decreased  damping  resulting  in a highly  unstable  oscillation. 
Increases  in  Mach  number  did  decrease  the  effect of  Cz on the  Dutch roll,  but  even  at a 
Mach  number of 5, the  effect  was  significant.  Changes  in  C to undamped  values  also 
resulted  in  the  breakdown of the  roll-spiral  oscillation  into  the  roll  and  spiral  modes  for 
the  Mach  range  investigated. 

P 
P 

ZP 

The  effect of rolling  moment  due  to  yawing  velocity  Clr  on  calculated  vehicle 
damping is presented  in figure 34. Changing Czr has   small  effects on the  Dutch-roll 
oscillation,  but  large  changes,  either  positive or  negative,  cause  the  roll-spiral  oscillation 
to break down and  form the aperiodic  roll  and spiral  modes. 

SUMMARY OF RESULTS 

This  investigation  was  conducted  to  determine  the  supersonic  dynamic  stability 
characterist ics of a 0.0165-scale  model of a space  shuttle  orbiter.  These  tests  were 
made  over a range of Mach  numbers of 1.6  to 4.63 at   angles  of attack  up to 30'.  By using 
the measured  damping  data  and  static  data  from  the  shuttle  data  base,  three-degree-of- 
freedom  longitudinal  and  lateral  motion  analyses  have  been  made.  A  summary of the 
results  follows: 

1. For  both  the  longitudinal  and  lateral  data  there  was good agreement  between  the 
in-phase  parameters  computed  from  the  static  test  results  and  those  measured  in  the 
forced-oscillation  tests. 

2. The  model  exhibited  positive  damping  in  pitch  throughout  the  test  angle-of-attack 
range for Mach numbers  from 1.6  to 2.86. For  a Mach  number of 3.96  the  model  exhibited 
a region of undamping at   angles of attack  near 16'. 

3. The  model  exhibited  positive  damping  in  yaw  throughout  the  test  angle-of-attack 
and Mach number  range  except  at  the  highest  angle of attack  at  a Mach  number of 2.86. 

4. The  rolling-oscillation  tests  results show  that  the  model  exhibited  positive roll  
damping  for  the  test  angle-of-attack  range  for all Mach  numbers  except 2.36. At  this 
Mach  number  some  undamping  was  indicated at   angles of attack  above 26O. 

5. The resul ts   f rom the  longitudinal  analysis  showed  that  the  damping of the short  
period  oscillation  was  proportional  to  pitch  damping.  Increases  in  Mach  number 
decreased  the  effect of the  pitch  damping on the  vehicle  characteristics. 

6. At  Mach  numbers of 4.0 and 5.0 the  vehicle  with  an  aft  center of gravity had a n  
unstable  aperiodic mode  in  pitch  with a time to double  amplitude of 1.33  seconds.  It 
would be  difficult  to  fly  this  level of instability  with  an  unaugmented  control  system. 

7. The  lateral  analysis  indicated  that  the  roll-spiral  oscillation  was  very  sensitive 
to variations  in yaw  damping  whereas  the  oscillatory Dutch rol l   was not  affected  by  the 
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value of yaw damping. The roll  mode  and  the roll-spiral  oscillation  were  sensitive to 
changes  in yaw damping. 

8. The  lateral  analysis  also  showed  that  at  the  lower  Mach  numbers (M = 2.0 and 
M = 3.0)  the  Dutch-roll  oscillation  was  extremely  sensitive  to  the  roll  damping.  The 
influence of roll  damping on the  Dutch rol l   was  decreased  a t  the  higher  Mach  numbers 
but  even a t  a Mach  number of 5  the  effect was significant. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, Va. 23665 
October  6,  1975 
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APPENDIX 

MEASUREMENTS AND REDUCTION OF DYNAMIC STABILITY DATA 

Basic  Principles 

Strain-gage  bridges are used  to  measure  the  torque  required  to  oscillate  the  model 
and  the  angular  displacement of the  model  with  respect  to  the  fixed  portion of the  sting. 
Additional  bridges a r e  provided  on  the  pitch-yaw  balance  to  provide  signals  proportional 
to  normal  force  and  rolling  moment  and  on  the  roll  balance  to  provide  signals  proportional 
to yawing  moment.  The  constant  components of the  bridge  outputs are removed  by  using 
conventional  bridge-balance  circuits.  The  nonconstant  components  are  amplified  and 
passed  through  mechanically  coupled, but electrically  independent,  sine-cosine  resolvers. 
These  resolvers  rotate  with  constant  angular  velocity at the  frequency of model  oscilla- 
tion  and  resolve  each  signal  into  orthogonal  components.  The  components are  rectified 
by  phase-sensitive  demodulators  and are read on  damped,  digital  voltmeters  to  provide 
direct-current  voltages  proportional  to  the  amplitudes of the  orthogonal  components.  The 
individual  resolvers are electrically  alined so that  the  phase  angle  between  the  torque 
required  to  oscillate  the  model  and  the  angular  displacement  and  between  the  secondary 
signal  (rolling  moment, yawing  moment, or normal  force)  and  angular  displacement  may 
also  be  determined  from  the  orthogonal  components. 

The  resolver-damped  voltmeter  system  acts as an  extremely  narrow  band-pass f i l -  
t e r  with  the  center  frequency  always  being  the  frequency of oscillation of the  model.  In 
this way, as explained  in  reference 1, the  effects of random  signal  inputs  because of tunnel 
turbulence or other  causes are eliminated.  Thus,  only  those  components of the  desired 
torques,  forces,  and  angular  displacement  which  occur at the  frequency of oscillation  are 
used  in  computing  the  dynamic  stability  characteristics of the  model. 

The  frequency of oscillation is measured  by  an  electronic  counter  which  counts  for 
1 second  the  pulses  generated  by a photocell  device.  This  device had a slotted  disk 
attached  to  the  shaft of the  motor  turning  the  resolvers. 

The  computation of the  various  parameters  presented  below is an  extension of the 
material  in  reference 6. 

Computation of Pitching  Parameters 

For  the  pitching  tests,  measurements  were  made of the  amplitude of the  torque 
required  to  oscillate  the  model  in  pitch Ty, the  amplitude of the  angular  displacement  in 
pitch of the  model  with  respect  to  the  sting 0, the  phase  angle 77 between  Ty  and 0, 
and  the angular velocity of the  forced  oscillation o. The  viscous-damping  moment  coef- 
ficient  in  pitch  (in-phase  with  pitching  velocity)  for  this  single-degree-of-freedom  system 
was computed as 
18 
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Ty   s in  r] 

00 
cy = 

and  the  spring-inertia  parameter  in  pitch  (in-phase  with  displacement) was computed as 

T cos r] 

0 
K y  - Iyw2 = 

where K y  is the  torsional-spring  coefficient of the  system  and  Iy is the  moment of 
inertia of the  system  about  the body  Y-axis.  In  sketch (a), the  relationship  between dis- 
placement and torque is shown. 

Ty s in  7 = C y 0 0  

, 

T y  COS 7 = (Ky - IYw )0 2 
axis 

Sketch (a) Vector  diagram of torque  and  displacement  for  dynamic stability pitch  tests. 
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APPENDIX 

For these  tests,  the  damping-in-pitch  parameter  was  computed as 

and  the  oscillatory  longitudinal-stability  parameter  was  computed as 

The wind-off value of Cy is determined at the  frequency of wind-off velocity  resonance 
since  the  value of Cy is independent of frequency  and  can be determined  most  accurately 
at the  frequency of velocity  resonance.  (See ref. 3.) The wind-on  and wind-off values of 
Ky - Iyo2 are determined  at  the same  frequency  since Ky - Iyw2 is a function of 
frequency. 

During  the  pitch  oscillation  tests,  measurements  were  also  made of the  normal 
force N induced by the  pitching  oscillation  and of the  phase  angle 5 between N and 
the  pitching  displacement.  The  normal-force  coefficient  in-phase  with  pitching  velocity 
for  this  system  was  computed as 

N s in  [ 
'N,Z = wo 

and  the  force  acceleration  parameter  (in-phase  with  pitching  displacement)  in  pitch  was 
computed as 

where Ky is the  torsional-spring  coefficient of the  system, 2 is its effective  length  with 
respect  to  the  balance  pivot,  m is the  model  mass,  and  x is the  distance  from  the bal- 
ance pivot to  the  center of the  model  mass  (positive  forward). 

The  normal  force  due  to  pitch rate parameter  was  computed as 

+ 'Nb' -qT[(CN,Z) 2v 
Nq wind on 
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and  the  normal  force  due  to  pitch  displacement  parameter  was  computed as 

The wind-off and  wind-on values of - - mxo2 are determined at the  same  frequency. 
The  normal-force  data for  wind-on  conditions are taken  simultaneously  with  the  pitch  data 
at the  frequency  for  velocity  resonance  in  pitch of the  system. 

KY 
2 

Computation of Yawing Parameters  

For the yawing tests, measurements  were  made of the  torque  required  to  oscillate 
the  model  in yaw T Z ,  the  amplitude of the angular displacement  in yaw of the  model  with 
respect  to  the  sting sr/, the  phase  angle X between TZ and sr/, and  the  angular  velocity 
of the  forced  oscillation w.  The  viscous-damping  moment  coefficient  in yaw Cz   for  
this single-degree-of-freedom system  was  computed  in a manner  similar  to  the  pitch  case 
as 

T Z  s in  h cz = 
wlc/ 

and  the  spring-inertia  parameter  in yaw was computed as 

2 -  z KZ - IZW - 
T cos h 

sr/ 

where KZ is the  torsional  spring  coefficient of the system and IZ is the  moment of 
inertia of the  system about  the body Z-axis. 

For  these  tests,  the  damping-in-yaw  parameter  was  computed as 

cnr - cni cos CY = -2 2 v  kz) 
q,Sb wind on - pz) wind  off] 

and the  oscillatory  directional-stability  parameter as 

c"P 
cos CY + k  2  C nf = -IFz qmSb 1 - Izw2) - kZ - I z w  3 wind of (12) wind  on 

" L 1 
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The wind-off value of Cz is determined at the  frequency of wind-off  velocity  resonance, 
and  the wind-off and  wind-on  values of KZ - Izo2 are determined at the  same  frequency. 

As part  of the yawing oscillation  tests,  measurements  were  made of the  amplitude 
of the  rolling  torque TK induced  by  the  yawing  oscillation  and  the  phase  angle y 

between Tk and  the  yawing  displacement I,!'. The  rolling-moment  coefficient  in-phase 
with  yawing  velocity  for  this  system was 

TH s in  y 
c1 ,z  = wlC/ 

and  the  rolling-moment  parameter  in-phase  with yawing displacement was 

where A is the  torsional  spring  coefficient  in  roll  induced by a yawing displacement  and 
Ixz is the  product of inertia of the  system. 

For  these  tests  the  rolling  moment  due  to yaw rate  parameter was  computed as 

and the  effective  dihedral  parameter was computed as 

The wind-off and  wind-on  values of A + Ixzw2 are determined at the  same  frequency 
since A + 1 ~ ~ w 2  is a function of frequency. 

Computation of Rolling  Parameters 

For  the  rolling tests, measurements  were  made of the  amplitude of the  torque 
required  to  oscillate  the  model  in  roll TX, the  amplitude of the angular displacement  in 
roll of the  model  with  respect  to  the  fixed  portion of the  sting @, the  phase  angle cr 
between  TX and a, and  the  angular  velocity of the  forced  oscillation w. The  viscous- 
damping  coefficient  in  roll 'Cx for  this  single-degree-of-freedom  system was computed 
in a manner  similar  to  the  pitch and yaw cases as 
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APPENDIX 

and  the  spring-inertia  parameter  in  roll was computed as 

where Kx is the  torsional  spring  coefficient of the  system and Ix is the  moment of 
inertia of the  system  about  the  body  X-axis. 

For  these  tests,  the  damping-in-roll  parameter was computed as 

cI + cI .  s in  cy = - 7kx) 2 v  
P P wind  on qooSb 

and  the  rolling  moment  due  to  roll-displacement  parameter as 

As in  the  pitch  and yaw cases,   the wind-off value of Cx is determined  at  the  frequency 
of wind-off  velocity  resonance  since  the  value of Cx is independent of frequency and can 
be  determined  most  accurately at the  frequency of velocity  resonance.  The  wind-on  and 
wind-off values of Kx - Ixw2 are  determined at the  same  frequency  since Kx - Ixw 2 

is a function of frequency. 

As  part  of the  rolling  oscillation  tests,  measurements  were  made of the  amplitude 
of the yawing torque T i  induced by the  rolling  oscillation  and  the  phase  angle E 

between T k  and  the  rolling  displacement a. The  yawing-moment  coefficient  in-phase 
with  rolling  velocity  for  this  system was 

T' s in  E 
Z 

C n , x  = 

and  the  yawing-moment  parameter  in-phase  with  rolling  displacement was 

where B is the  torsional  spring  coefficient  in yaw induced  by a roll  displacement and 
Ixz is the  product of inertia of the  system. 
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APPENDIX 

For these  tests,   the yawing  moment  due  to  roll  rate  parameter was computed as 

and  the  yawing-moment  due  to  roll-displacement  parameter was computed as 

r 1 

The wind-off and  the  wind-on  values of B + IxZu2 are  determined  at  the  same  frequency 
since B + ~~~w~ is a function of frequency. 

It should be emphasized  that  the  measurement of the  primary  damping  parameters 

(Cmq + Cmh, Cn, - Cn cos cy, and C + C sin cy is inherently  more  accurate  than 
the  measurements of the  secondary  damping  parameters C N ~  + C N ~ ,  Clr - C cos cy, 
and C + C n j   s i n  cy) where  the  small  damping  parameters  are  measured  in  the  presence 
of large  forces  and moments  in-phase  with  the  displacements. 

P ZP ZP ) 
( ZP 

nP 
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TABLE  1.-  ORBITER  STATIC  AERODYNAMICS  USED  IN  ANALYSIS 

a, 
deg 

0 
5 
7.5 

10 
12.5 
15 
20 
25 
30 
35 
40 
45 

a, 
deg 

0 
5 
7.5 

10 
12.5 
15 
20 
25 
30 
35 
40 
45 

~~ 

M = 2.0 

-0.047 
.126 
.220 
.309 
.405 
.501 
.685 
.861 

1.024 
””- 

””- 

””_ 

~~ 

M = 2.0 

0.142 
.148 
.160 
.184 
.213 
.255 
.365 
,506 
.693 
”” 

”” 

”” 

Untrimmed lift coefficient  derived  from 
shuttle data base fo r  - 

M = 3.0 

-0.050 
.081 
.146 
.221 
.299 
.375 
.528 
.676 
.823 
.955 

1.066 
1.144 

M = 4.0 

-0.05 
.053 
.112 
.176 
-247 
.321 
.467 
.608 
.749 
.885 
.999 

1.088 

Untrimmed  drag  coefficient  derived  from 
shuttle  data  base  for - 

M = 3.0 

0.105 
.lo4 
.112 
.128 
.157 
,185 
,274 
.396 
.554 
.746 
.970 

1.218 

M = 4.0 

0.090 
.085 
.093 
. lo6 
.124 
.156 
.239 
.3 53 
.502 
.689 
.go9 

1.161 
. .  

M = 5.0 

-0.05 
.044 
.099 
.156 
.220 
.284 
.426 
.569 
.714 
.850 
.962 

1.049 

M = 5.0 

0.082 
.075 
.082 
.093 
.110 
.139 
.217 
.329 
.477 
.660 
.876 

1.122 

” - 
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TABLE 1.- Continued 

Q, 

deg 

0 
5 
7.5 

__ 

10 
12.5 
15 
20 
25 
30 
35 
40 
45 

- - " ~ - ." . - _ ~ .  ~. . . 

Untrimmed  pitching-moment  coefficient  (forward c.g.1 
derived  from  shuttle  data  base  for - 

" 

% 
deg 

0 
5 
7.5 

10 
12.5 
15 
20 
25 
30 
35 
40 
45 

___.  ~ __  

! 

". - . 

M = 2.0 

0.016 
- .009 
-.019 
-.028 
- .032 
-.036 
-.046 
-.058 
- .064 
"" 

_"_ 
"" 

. - 

M = 3.0 

-0.010 
-.010 
-.010 
-.011 
-. 013 
-.015 
-. 020 
- .028 
-. 037 
- .048 
-, 062 
- .079 

. " ~ ~. . . - 

. "" 

M = 4.0 

-0.018 
-.015 
- .014 
- .014 
-.014 
-.015 
-.018 
-.022 
-.038 
-.037 
-.050 
-.070 

- ~ "" . - 

" .- 

M = 5.0 

- 0.022 
-. 018 
-.016 
-.015 
-.014 
-. 014 
-. 016 
-.019 
- .025 
-.036 
- .050 
- .067 

" " ___ 

~" - ". ___ 

- -.I__ 

. . ~ .  .. " - - ". . ~ ~" . -~ . .~ - 

C per  degree  derived  from  shuttle  data  base for - 
L6e 
.. . 

M = 2.0 

0.003 
.003 
.003 
.003 
.003 
.003 
.003 
.003 
.003 5 
"̂" 

-"" ""_ 
- . .~ 

.~ -. ..~. 

M = 3.0 

0.0015 
.0015 
.0015 
.0015 
.0015 
.0015 
.0015 
.0015 
.0015 
. 00 20 
.oo 20 
.0030 

- ~ ~. ." 

" . ~- 

" 

M = 4.0 

0.0010 
.0010 
.0010 
.0010 
.0010 
.0010 
.0010 
.0010 
.0025 
.0025 
.003 5 
.003 5 

- - - . . " - 

~ - ..~. .. .. ~~ 

- .~ 

M = 5.0 

0.000 5 
.0005 
.0005 
. 000 5 
.0005 
. 000 5 
.OOO 5 
.0030 
.0030 
.003 5 
.003 5 
.003 5 

_ _ _  - 

- " ~ .- - 
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a, 
deg 

0 
5 
7.5 

10 
12.5 
15  
20 
25 
30 
35 
40 
45 

5 1 7.5 

I lo 
12.5 
15 
20 
25 

TABLE I.- Continued 
- ." " 

D6e 
per  degree  derived from shuttle  data base fo r  - 

M = 2.0 

0.003 
0 
0 

.0002 

.0003 

.0005 

. 000 5 

.001 

.0018 
"-" 
"-" 
"-" 

M = 3.0 

-0.0005 
- -~ 

-.00025 
-.0001 
0 
. 000 2 
.0004 
.0008 
.0013 
.0018 
.0025 
.0032 

"-" 
- .___ 

M = 4.0 M = 5.0 

-0.0005 - 0.0004 
-.00025 
-.0001 

.0006 

0 0 
.0007 

-______ 

. 000 2 

.0027  .003  2 

.OO 23 .0025 

.0018  .0018 

.0013  .0013 

.0008 .0008 

.0004 .0004 

.ooo 2 

"-" .0040 
-~ - ~ _ _ _  

_____-__- " 

Cm6e (forward c.g.) per  degree  derived 
from shuttle  data  base for - 

M = 2.0 

-0.003 
- .003 
- .003 
- .003 
- .003 
- .003 
-.003 
-.003 
- .003 
"-" 
"-" 
""- 

M = 3.0 

-0.0015 
-.0015 
-.0015 
-.0015 
-.0015 
-.0015 
- .004 
- .004 
- .004 
-.006 
-.006 
- .008 

M = 4.0 

-0.0015 
-.0015 
-.0015 
-.0015 
-.0015 
-.0015 
- .004 
- .004 
- .004 
-. 006 
- .006 
- .008 

" 

M = 5.0 

- 0.000 5 
-.0005 
-.0005 
-.0015 
-.0015 
-.0015 
-.0025 
-.0025 
-.0045 
-.0045 
- .006 
-.006 
" 

1 
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TABLE I.- Continued 

Q? 

deg 

- " 
0 
5 
7.5 

10 
12.5 
15 
20 
25 
30 
35 
40 
45 

. 

-~ " - 

cy, 
deg 

0 
5 
7.5 

~- ~ ". 

10 
12.5 
1 5  
20 
25 
30 
35 
40 
45 

." 

- .- ~ 

cnP (forward c.g.) per  degree  derived 
from  shuttle  data  base  for - 

"" 

M = 2.0 

0.00140 
.00090 
,00060 
.00025 

- . 000 20 
- .00100 
-.00235 
-.00285 
-.00325 
-""" 
"""_ 
"""_ 

M = 3.0 

0.00110 
.00070 
.0004 5 
. 000 2 

-.00015 
-.0005 
-.00140 
-.00180 
-.00220 
- .00240 
-.00260 
- .OO 270 

M = 4.0 

0.0080 
.OOO 50 
.00035 
.@OO 10 

-.00025 
-.00055 
-.00110 
-.00150 
-.00210 
- .00200 
-.00220 
- .00240 

M = 5.0 

0.00060 
.00040 
.00025 

0. 
-.00032 
-.00060 
- .00090 
-.00125 
- .0014 5 
-.00165 
-.00185 
-.00200 

~. ~ 

"_ ~ 

clP 
" 

per  degree  derived  from  shuttle  data  base for - 
. . " ~ 

M = 2.0 

-0.00018 
- .00040 
- .00051 
- .00064 
-.00077 
- . 000 84 
-.00100 
-.00115 
-.00123 

- 

" -  " . ~~ ~ ~. 

-""- 
-""- 
""" 

-~ 

- .  _ "  
M = 3.0 

-0.00020 
- .00043 
-.00055 
- .00068 
- .00086 
- .00107 
- .00136 
-.00144 
-.00152 
- .00152 
-.00150 
-.00148 

- ~. 

M = 4.0 

-0.00004 
-.00039 
- .00048 
- .00071 
- .00089 
- .00106 
- .00134 
-.00145 
- .00152 
- .00162 
-.00166 
-.00163 

- -__ 

M = 5.0 

0.00002 
- .0003 1 
-.00042 
- .00065 
- .00086 
- .00099 
- .00132 
- .00143 
-.00156 
- .00167 
-.00178 
-.00178 

~ __  

1 
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. . . . . . . 

2 g  
" 

0 
5 
7.5 
10 
12.5 
15 
20 
25 
30 
35 
40 
45 

T 
TABLE I.- Concluded 

cyB 
per  degree  derived from shuttle data base for - 

" ___ . .. . . .. . " 

1 
~ 

M = 2.0 

-0.021 
_I_ ". ~ 

-.0185 
- .0180 
-.0170 
- .0160 
- .0150 
-.0110 
-.0110 
- .008 

-"" 
""- 

" 

M = 3.0 

-0.0185 
-.0175 
-.0165 
-.0155 
-.0145 
- .O 140 
-.0115 
-.0115 
- .0105 
-.0105 
-.0110 
-.0120 

- 

- 

___ 

" . 

M = 4.0 

-0.0170 
-.0150 
-.0155 
-.0145 
-.0135 
-.0127 
-.0103 
-.0112 
-.0103 
- .0090 
- .0090 
-.0100 

." . -  

~~ - _ ~ _  

.. J 
M = 5.0 1 
-0.0155 
-.0145 
-.0140 
-.0130 
-.0125 
-.0115 
- .009 
-.010 
-.009 
- .0080 
- .0080 
- .0080 

l"_~~ 

___ " .. . - 
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TABLE 11.- ORBITER MASS PROPERTIES 

lberived  from  shuttle  data base1 L J 

84 096 kg 

7 710 435  kg-m2 

1 014 138 kg-rn2 

7  870  419 kg-mz 

199 300 kg-m2 L Ix z 

TABLE 111.- FLIGHT CONDITIONS FOR ANALYSES 

perived  from  shuttle data base) 

Mach 
number 

2.04 
3.03 
4.04 
5.02 

.~ - 

~~ ~ 

a, 
deg 

12.2 
14.6 
17.8 
21.10 

A1 ti  tude , 
m 

23 737.8 
28 235.7 
32 574.3 
35 780.8 

Dynamic  pressure, 
m/sec Pa 

593.1 9 011 
910.7 10 026 

1227.7 9 332 
1563.6  7  881 
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Wind direction x 0 x oo 

Azimuth  reference 

z, zs 
Figure 1.- System of axes used  in  investigation. Arrows indicate  positive 

direction of moments,  forces, and angles. 
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Water-line 
Z 

zero 

Reference  dimensions 
S = 680 cm2 
c = 19.899 cm 
- 

39* 259 Center of x = 35.149 cm  (forward) 
gravity x = 36.230 cm  (aft) 

” 2 = 54.076 cm 

W1 
m 4  

Z cg = 15.682 

16.764- 

Forward  center of gravity - 0.65 2 
Aft center  of  gravity = 0.672 

‘Body 

r e  

I 

flap 

Figure 2.- Sketch of configuration tested. All dimensions given in centimeters. 



\ Figure 3. -  Rudder  flare angle definition, \ 
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(a) Side  view. 

Figure 4.- Photographs of the  model  mounted for  forced-oscillation  tests in  the  Langley  Unitary  Plan wind tunnel. 



(b) Base view. 

Figure 4. - Concluded. 



L Crank and crosuhead mechanism 

k 

(a) Pitch-yaw  balance. 

Figure 5.- Photographs of small-amplitude  forced-oscillation balances. 

L- 68- 10 690.1 



(b) Roll  balance. 

Figure 5.- Concluded. 
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Figure 6.- Shuttle entry  flight  profile  (forward c.g.). 
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(a) M = 1.60. 

Figure 7 . -  Effect of body flap  on  the  static  longitudinal  characteristics of the  model. 
Forward c.g.; 6, = 0 ; rudder  flare, 40 ; and GBF = 0’. 0 0 
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Figure 7.-  Continued. 
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Figure 7. - Continued. 
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Figure 7.- Continued. 
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(a) M = 1.60. 

Figure 8.- Effect of vertical  tail on the  static lateral characterist ics of the  model. 
Forward c.g.; 6, = 0 ; rudder  flare, 40'; and 6BF = 0'. 0 
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Figure 8. - Continued. 

47 



. 04  

.02 

cyB 
0 

-. 02 

.004 

. M32 

CZB 0 

-. 002 

-. 004 

Angle of attack, a, d e g  

(c) M = 2.36. 

Figure 8. - Continued. 
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Angle of attack, u, deg 

(e) M = 3.96. 

Figure 8.- Continued. 
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8  12 16 20  24  28  32 

Angle of attack, a, d e g  

(a) M = 1.60. 

Figure 9.- Effect of body  flap  on  the  static lateral characterist ics of the  model. 
Forward c.g.; 6, = 0'; rudder  flare, 40'; and aBF = 0'. 
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Figure 9.- Continued. 
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Angle of attack, a, d e g  

( c )  M = 2.36. 

Figure 9.- Continued. 
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Figure 34. - Concluded. 
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