171 research outputs found
Magnetic chirality of the spin triplet in the spin-ladder compound Sr14Cu24O41 as seen via polarized inelastic neutron scattering
International audienceWe report the direct observation by polarized inelastic neutron scattering experiments at low fields (3.5 T) of the splitting of the spin triplet of magnetic excitations in the response associated with the ladders in the composite cuprate Sr14Cu24O41. By conveniently choosing the magnetic field configuration and by making use of the spin chirality of the excitations, the splitting can be observed at relatively low fields. In this way, resonant excitations can be separated from the remainder of magnetic and phonon excitations at high temperatures. In Sr14Cu24O41, the 32-meV gapped mode vanishes above βΌ200 K, close to the hole-crystal melting temperature previously observed by resonant x-ray and neutron diffraction
Macroscopic Quantum Coherence of the Spin Triplet in the Spin-Ladder Compound Sr14Cu24O41
International audienceWe report the direct observation by inelastic neutron scattering experiments of a spin triplet of magnetic excitations in the response associated with the ladders in the composite cuprate Sr14Cu24O41. This appears as a peak at q_{Q1D}=\pi and energy \Delta_1=32.5 meV, and we conjecture that all the triplets making up this conspicuous peak have the same phase and therefore interpret it as the signature of the occurrence of quantum coherence along the ladder direction between entangled spin pairs. From the comparison with previous neutron and x-ray data, we conclude that the temperature evolution of this mode is driven by the crystallization of holes into a charge density wave in the ladder sublattic
Rupture by damage accumulation in rocks
The deformation of rocks is associated with microcracks nucleation and
propagation, i.e. damage. The accumulation of damage and its spatial
localization lead to the creation of a macroscale discontinuity, so-called
"fault" in geological terms, and to the failure of the material, i.e. a
dramatic decrease of the mechanical properties as strength and modulus. The
damage process can be studied both statically by direct observation of thin
sections and dynamically by recording acoustic waves emitted by crack
propagation (acoustic emission). Here we first review such observations
concerning geological objects over scales ranging from the laboratory sample
scale (dm) to seismically active faults (km), including cliffs and rock masses
(Dm, hm). These observations reveal complex patterns in both space (fractal
properties of damage structures as roughness and gouge), time (clustering,
particular trends when the failure approaches) and energy domains (power-law
distributions of energy release bursts). We use a numerical model based on
progressive damage within an elastic interaction framework which allows us to
simulate these observations. This study shows that the failure in rocks can be
the result of damage accumulation
Trapping dust particles in the outer regions of protoplanetary disks
In order to explain grain growth to mm sized particles and their retention in
outer regions of protoplanetary disks, as it is observed at sub-mm and mm
wavelengths, we investigate if strong inhomogeneities in the gas density
profiles can slow down excessive radial drift and can help dust particles to
grow. We use coagulation/fragmentation and disk-structure models, to simulate
the evolution of dust in a bumpy surface density profile which we mimic with a
sinusoidal disturbance. For different values of the amplitude and length scale
of the bumps, we investigate the ability of this model to produce and retain
large particles on million years time scales. In addition, we introduced a
comparison between the pressure inhomogeneities considered in this work and the
pressure profiles that come from magnetorotational instability. Using the
Common Astronomy Software Applications ALMA simulator, we study if there are
observational signatures of these pressure inhomogeneities that can be seen
with ALMA. We present the favorable conditions to trap dust particles and the
corresponding calculations predicting the spectral slope in the mm-wavelength
range, to compare with current observations. Finally we present simulated
images using different antenna configurations of ALMA at different frequencies,
to show that the ring structures will be detectable at the distances of the
Taurus Auriga or Ophiucus star forming regions.Comment: Pages 15, Figures 14. Accepted for publication in Astronomy and
Astrophysic
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyerβs patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as βimmunosurveillanceβ receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines
Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus
<p>Abstract</p> <p>Background</p> <p>The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by <it>Staphylococcus spp</it>. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by <it>S. epidermidis </it>and <it>S. aureus </it>was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance.</p> <p>Results</p> <p>The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by <it>S. aureus </it>than <it>S. epidermidis</it>. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line.</p> <p>Conclusions</p> <p>Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards <it>Staphylococcus </it>infections, and opens new fields for further investigation.</p
Differential Trafficking of Oxidized LDL and Oxidized LDL Immune Complexes in Macrophages: Impact on Oxidative Stress
Oxidized low-density lipoproteins (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to formation of lipid-laden macrophages (foam cells). It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCgamma receptor I (FCgamma RI). This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress.Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70) and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC.Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could ultimately influence macrophage function and survival. Furthermore, oxLDL-IC might regulate the intracellular trafficking of free oxLDL possibly through the induction of HSP70/70B'
Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2
BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands
- β¦