93 research outputs found

    Experimental investigation on the bond behavior of a compatible TRM-based solution for rammed earth heritage

    Get PDF
    Despite the current awareness of the high seismic risk of earthen structures, little has been done so far to develop proper strengthening solutions for the rammed earth heritage. Based on the effectiveness of TRM for masonry buildings, the strengthening of rammed earth walls with externally bonded fibers using earth-based mortar is being proposed as a compatible solution. In this context, the investigation of bond behavior was conducted by means of direct tensile tests, pull-out tests and single lap-shear tests. The specimens were prepared using earth-based mortars and two different types of meshes (glass and nylon) while considering different-bonded lengths. The direct tensile tests on TRM coupons showed the high capacity of the nylon mesh in transferring stresses after cracking of the mortar. The pull-out tests highlighted that in the case of glass fiber mesh, the bond was granted by friction, while the mechanical anchorage promoted by the transversal yarns granted the bond of the nylon mesh. Finally, the single lap-shear tests showed that the adopted earth-based mortar seems to limit the performance of the strengthening.This work was supported by the Fundacao para a Ciencia e a Tecnologia [PTDC/ECM-EST/2777/2014, SFRH/BD/131006/2017, SFRH/BPD/97082/2013]

    Unusual cause of severe toxic methemoglobinemia in an infant: a case report

    Get PDF
    Toxic methemoglobinemia is an uncommon blood disorder induced by exposure to certain oxidizing agents and drugs. In severe cases, this condition may rapidly lead to major cardiopulmonary compromise and constitutes an emergency requiring prompt recognition and early management. We report an unusual case of severe toxic methemoglobinemia following wide cutaneous application of a pomade containing benzocaine, resorcin, and oxyquinoline (Nestosyl®) in an infant

    SaS-BCI: A New Strategy to Predict Image Memorability and use Mental Imagery as a Brain-Based Biometric Authentication

    Get PDF
    Security authentication is one of the most important levels of information security. Nowadays, human biometric techniques are the most secure methods for authentication purposes that cover the problems of older types of authentication like passwords and pins. There are many advantages of recent biometrics in terms of security; however, they still have some disadvantages. Progresses in technology made some specific devices, which make it possible to copy and make a fake human biometric because they are all visible and touchable. According to this matter, there is a need for a new biometric to cover the issues of other types. Brainwave is human data, which uses them as a new type of security authentication that has engaged many researchers. There are some research and experiments, which are investigating and testing EEG signals to find the uniqueness of human brainwave. Some researchers achieved high accuracy rates in this area by applying different signal acquisition techniques, feature extraction and classifications using Brain–Computer Interface (BCI). One of the important parts of any BCI processes is the way that brainwaves could be acquired and recorded. A new Signal Acquisition Strategy is presented in this paper for the process of authorization and authentication of brain signals specifically. This is to predict image memorability from the user’s brain to use mental imagery as a visualization pattern for security authentication. Therefore, users can authenticate themselves with visualizing a specific picture in their minds. In conclusion, we can see that brainwaves can be different according to the mental tasks, which it would make it harder using them for authentication process. There are many signal acquisition strategies and signal processing for brain-based authentication that by using the right methods, a higher level of accuracy rate could be achieved which is suitable for using brain signal as another biometric security authentication

    Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice

    Get PDF
    BACKGROUND: The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age) were compared to lumbar tracts (unaffected) and to those of healthy mice. RESULTS: No differences were found in the distribution of AMPA and NMDA receptor subunits at both ages. Western blots analysis showed a trend of reduction in AMPA and NMDA receptor subunits, mainly GluR1 and NR2A, exclusively in the cervical region of late symptomatic mice in the triton-insoluble post-synaptic fraction but not whole homogenates. Colocalisation experiments evidenced the expression of GluR1 and NR2A receptors in activated astrocytes from the cervical spinal cord of wobbler mice, GluR2 did not colocalise with GFAP positive cells. No differences were found in the expression of AMPA and NMDA receptor subunits in the lumbar tract of wobbler mice, where neither motoneuron loss nor reactive gliosis occurs. CONCLUSION: In late symptomatic wobbler mice altered levels of GluR1 and NR2A receptor subunits may be a consequence of motoneuron loss rather than an early feature of motoneuron vulnerability

    Recent advances in amyotrophic lateral sclerosis

    Get PDF
    • …
    corecore