1,480 research outputs found

    Lattice-point enumerators of ellipsoids

    Full text link
    Minkowski's second theorem on successive minima asserts that the volume of a 0-symmetric convex body K over the covolume of a lattice \Lambda can be bounded above by a quantity involving all the successive minima of K with respect to \Lambda. We will prove here that the number of lattice points inside K can also accept an upper bound of roughly the same size, in the special case where K is an ellipsoid. Whether this is also true for all K unconditionally is an open problem, but there is reasonable hope that the inductive approach used for ellipsoids could be extended to all cases.Comment: 9 page

    The Role of AtMUS81 in Interference-Insensitive Crossovers in A. thaliana

    Get PDF
    MUS81 is conserved among plants, animals, and fungi and is known to be involved in mitotic DNA damage repair and meiotic recombination. Here we present a functional characterization of the Arabidopsis thaliana homolog AtMUS81, which has a role in both mitotic and meiotic cells. The AtMUS81 transcript is produced in all tissues, but is elevated greater than 9-fold in the anthers and its levels are increased in response to gamma radiation and methyl methanesulfonate treatment. An Atmus81 transfer-DNA insertion mutant shows increased sensitivity to a wide range of DNA-damaging agents, confirming its role in mitotically proliferating cells. To examine its role in meiosis, we employed a pollen tetrad–based visual assay. Data from genetic intervals on Chromosomes 1 and 3 show that Atmus81 mutants have a moderate decrease in meiotic recombination. Importantly, measurements of recombination in a pair of adjacent intervals on Chromosome 5 demonstrate that the remaining crossovers in Atmus81 are interference sensitive, and that interference levels in the Atmus81 mutant are significantly greater than those in wild type. These data are consistent with the hypothesis that AtMUS81 is involved in a secondary subset of meiotic crossovers that are interference insensitive

    A method to sequence and quantify DNA integration for monitoring outcome in gene therapy

    Get PDF
    Human genetic diseases have been successfully corrected by integration of functional copies of the defective genes into human cells, but in some cases integration of therapeutic vectors has activated proto-oncogenes and contributed to leukemia. For this reason, extensive efforts have focused on analyzing integration site populations from patient samples, but the most commonly used methods for recovering newly integrated DNA suffer from severe recovery biases. Here, we show that a new method based on phage Mu transposition in vitro allows convenient and consistent recovery of integration site sequences in a form that can be analyzed directly using DNA barcoding and pyrosequencing. The method also allows simple estimation of the relative abundance of gene-modified cells from human gene therapy subjects, which has previously been lacking but is crucial for detecting expansion of cell clones that may be a prelude to adverse events

    Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment

    Get PDF
    Abstract. We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitudedependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40 % less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be • 10%. The GEOS-CHEM model captures 50 % and 60 % of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias. 1
    corecore