86 research outputs found

    3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR

    Get PDF
    International audienceDissolution of hyperpolarized species in liquids of interest for NMR is often hampered by the presence of bubbles that degrade the field homogeneity. Here a device constituted by a bubble pump and a miniaturized NMR cell fitting both inside the narrow bore of an NMR magnet is built by 3D printing. 129Xe NMR experiments performed with hyperpolarized xenon reveal high and homogeneous dissolution of the gas in water

    A doubly responsive probe for the detection of Cys4-tagged proteins

    Get PDF
    International audienceRecombinant proteins bearing a tag are crucial tools for assessing protein location or function. Small tags such as Cys4 tag (tetracysteine; Cys–Cys–X–X–Cys–Cys) are less likely disrupt protein function in the living cell than green fluorescent protein. Herein we report the first example of the design and synthesis of a dual fluorescence and hyperpolarized 129Xe NMR-based sensor of Cys4-tagged proteins. This sensor becomes fluorescent when bound to such Cys4-tagged peptides, and the 129Xe NMR spectrum exhibits a specific signal, characteristic of the biosensor-peptide association

    Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice

    Get PDF
    Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate, characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of IFNγ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes

    Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems

    Get PDF
    Introducing small DNA molecules (Dbait) impairs the repair of damaged chromosomes and provides a new method for enhancing the efficiency of radiotherapy in radio-resistant tumors. The radiosensitizing activity is dependent upon the efficient delivery of Dbait molecules into the tumor cells. Different strategies have been compared, to improve this key step. We developed a pipeline of assays to select the most efficient nanoparticles and administration protocols before preclinical assays: (i) molecular analyses of complexes formed with Dbait molecules, (ii) cellular tests for Dbait uptake and activity, (iii) live zebrafish embryo confocal microscopy monitoring for in vivo distribution and biological activity of the nanoparticles and (iv) tumor growth and survival measurement on mice with xenografted tumors. Two classes of nanoparticles were compared, polycationic polymers with linear or branched polyethylenimine (PEI) and covalently attached cholesterol (coDbait). The most efficient Dbait transfection was observed with linear PEI complexes, in vitro and in vivo. Doses of coDbait ten-fold higher than PEI/Dbait nanoparticles, and pretreatment with chloroquine, were required to obtain the same antitumoral effect on xenografted melanoma. However, with a 22-fold lower ‘efficacy dose/toxicity dose' ratio as compared with Dbait/PEI, coDbait was selected for clinical trials

    Apports des champs rf hors résonance aux études structurales et dynamiques en solution par RMN

    No full text
    L'emploi d'irradiation hors résonance en R.M.N. liquide pour étudier la structure et la dynamique des macromolécules biologiques s'est fortement developpé ces dernières années. L'expression des vitesses de relaxation et les avantages inhérents à une telle approche sont tous d'abord décrits. La séquence de ROESY hors-résonance qui permet l'étude conformationnelle de tout type de molécule en découle. Dans un deuxième temps, nous abordons le problème de la dynamique interne des molécules et plus particulièrement l'intérêt de recourir aux irradiations hors résonance. Les avantages et les inconvénients des différentes méthodes sont décrits. Enfin nous évoquons les tendances actuelles. de la recherche dans ce domaine

    NMR study of the dissolution of laser-polarized xenon

    No full text
    NMR of laser-polarized xenon is used to probe the dissolution behaviour of the noble gas in different liquids. The dissolution and self-relaxation rates are extracted via a macroscopic model, and comparison of the decay rate of the xenon magnetization in deuterated and non-deuterated solvent pairs allows the determination of the pure dipole-dipole contribution to relaxation. A transient convective effect, tentatively assigned to the xenon concentration gradient, is observed and characterized by diffusion encoding MRI experiments. The flow of xenon penetrates inside the solvent near the walls of the NMR tube, the longitudinal images showing a “∩” shape, the transverse ones a “O” shape. This convection effect has implications for delivery conditions of laser-polarized xenon in continuous flow experiments and magnetic resonance imaging

    NMR study of the dissolution of laser-polarized xenon

    No full text

    Xe NMR-based sensors: biological applications and recent methods

    No full text
    International audienceXenon is a first-rate sensor of biological events, due to its large polarizable electron cloud inducing significant modification of NMR parameters through slight changes in its local environment. The use of xenon as a sensor is of increasing interest for sensitive magnetic resonance imaging, since its signal can be enhanced by several orders of magnitude, mainly by spin-exchange optical pumping. Furthermore xenon can be vectorized toward targets of interest by using functionalized host systems, enabling their detection at subnanomolar concentrations. Associated with a new generation of detection methods this gives rise to a powerful molecular imaging approach, where xenon can be delivered on purpose several times after introduction of the functionalized host system

    Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface.

    No full text
    The solution structure of ganglioside G(M1) carbohydrate moiety at the surface of a 102-kDa lipid-modified-G(M1) micelle is investigated by high-resolution 1H-NMR in H2O. The micellar surface can be considered a cluster-like lateral distribution of the gangliosides, each single monomer being anchored in a carbohydrate-enriched model membrane matrix. 1H NOESY measurements at short mixing times reveal a rigid trisaccharide core -beta-GalNAc-(1-4)-[alpha-Neu5Ac-(2-3)]-beta-Gal- and a more flexible beta-Gal-(1-3)-beta-GalNAc- terminal glycosidic bond. In the lipid-modified G(M1) ganglioside micellar system, there is no evidence that intermolecular side-by-side carbohydrate interactions modulate, or alter in any way, the head-group spatial arrangement. Possible intermonomer interactions at the level of the branched trisaccharide portion were further investigated on mixed micelles of natural N-glycolyl- and N-acetylneuraminic acid containing G(M1) in D2O, taking advantage of the different NMR features of N-glycolyl- and N-acetylneuraminic acids, which allow discrimination between sialic acid ring proton signals. Measurements of the water/ganglioside-OH proton chemical exchange rates suggest hydroxyl group involvement at position 8 of sialic acid in strong intramolecular interaction processes

    Isomer‐dependent escape rate of xenon from a water‐soluble cryptophane cage studied by Ab initio molecular dynamics

    No full text
    International audienceThe escape of xenon from the anti and syn diastereomers of hexacarboxylic-cryptophane-222 in water has been studied by ab initio molecular dynamics simulations. The structures of both complexes, when the xenon atom is trapped inside their cages, have been compared and show no major differences. The freeenergy profiles corresponding to the escape reaction have been calculated with the Blue Moon ensemble method using the distance between Xe and the center of mass of the cage as the reaction coordinate. The resulting free-energy barriers are very different; the escape rate is much faster in the case of the syn diastereomer, in agreement with experimental data obtained in hyperpolarized 129^{129}Xe NMR. Our simulations reveal the mechanistic details for each diastereomer and provide an explanation for the different in-out xenon rates based on the solvation structure around the cages
    corecore