4,193 research outputs found
Pulmonary giant cells and traumatic asphyxia
A morphometrical analysis was performed to elucidate the significance of pulmonary polynuclear giant cells as a histological sign of asphyxiation. A total of 13 cases of homicidal strangulation of throttling, 8 cases of traumatic asphyxia due to chest compression and 10 control cases (cause of death: severe head injury, no signs of aspiration or other relevant pulmonary alterations, smokers and non-smokers) were investigated. The number of alveolar macrophages containing 1 or 2 nuclei and of polynuclear giant cells per microscopic field (0.000025 cm2) was estimated and a statistical evaluation was carried out. A considerable individual variation was observed in all groups with a tendency to higher numbers of cells in cases of smokers or advanced individual age. However, no significant differences were detectable in the content of alveolar macrophages and in particular of polynuclear giant cells between the asphyxiated individuals and the controls. Since polynuclear giant cells occurred in similar amounts in healthy, functionally normal lungs of non-asphyxiated individuals, the detection of such cells cannot be regarded as a reliable indicator for asphyxiation
Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.
Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate
Conditions of the Development of Logistic Centers in Poland in the Context of European States Experiences
The article is, for the most part, the aftermath of his own examinations carried out in years 2007-2010 and concerning logistic centers development conditioning.Artykuł jest w znacznej mierze pokłosiem badań własnych autora przeprowadzonych w latach: 2007-2010 dotyczących uwarunkowań rozwoju centrów logistycznych
Spectacular Role of Electron Correlation in the Hyperfine Interactions in States in Alkaline Earth Ions
The low-lying n(=3,4,5)d states alkaline earth ions are of vital
importance in a number of different physical applications. The hyperfine
structure constants of these states are characterized by unusually strong
electron correlation effects. Relativistic coupled-cluster theory has been
employed to carry out {\it ab initio} calculations of these constants. The role
of the all order core-polarization effects was found to be decisive in
obtaining good agreement of the results of our calculations with accurate
measurements. The present work is an apt demonstration of the power of the
coupled-cluster method to cope with strongly interacting configurations.Comment: Submitted to Physical Review Letters, 3 figures and 5 table
Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions
The method and status of a study to provide numerical, high-precision values
of the self-energy level shift in hydrogen and hydrogen-like ions is described.
Graphs of the self energy in hydrogen-like ions with nuclear charge number
between 20 and 110 are given for a large number of states. The self-energy is
the largest contribution of Quantum Electrodynamics (QED) to the energy levels
of these atomic systems. These results greatly expand the number of levels for
which the self energy is known with a controlled and high precision.
Applications include the adjustment of the Rydberg constant and atomic
calculations that take into account QED effects.Comment: Minor changes since previous versio
QED theory of the nuclear recoil effect on the atomic g factor
The quantum electrodynamic theory of the nuclear recoil effect on the atomic
g factor to all orders in \alpha Z and to first order in m/M is formulated. The
complete \alpha Z-dependence formula for the recoil correction to the
bound-electron g factor in a hydrogenlike atom is derived. This formula is used
to calculate the recoil correction to the bound-electron g factor in the order
(\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page
How much vector control is needed to achieve malaria elimination?
Roll Back Malaria's ambitious goals for global malaria reduction by 2015 represent a dilemma for National Malaria Control Programs (NMCPs) that are still far from malaria elimination. Current vector control efforts by NMCPs generally fall short of their potential, leaving many NMCPs wondering how much vector control it will take to achieve malaria elimination. We believe the answer is detailed in the relationships between the entomological inoculation rate (EIR) and four epidemiological measures of malaria in humans. To achieve adequate vector control, NMCPs must evaluate EIRs to identify problematic foci of transmission and reduce annual EIRs to less than one infectious bite per person
Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields
The equivalence of the covariant renormalization and the partial-wave
renormaliz ation (PWR) approach is proven explicitly for the one-loop
self-energy correction (SE) of a bound electron state in the presence of
external perturbation potentials. No spurious correctio n terms to the
noncovariant PWR scheme are generated for Coulomb-type screening potentia ls
and for external magnetic fields. It is shown that in numerical calculations of
the SE with Coulombic perturbation potential spurious terms result from an
improper treatment of the unphysical high-energy contribution. A method for
performing the PWR utilizing the relativistic B-spline approach for the
construction of the Dirac spectrum in external magnetic fields is proposed.
This method is applied for calculating QED corrections to the bound-electron
-factor in H-like ions. Within the level of accuracy of about 0.1% no
spurious terms are generated in numerical calculations of the SE in magnetic
fields.Comment: 22 pages, LaTeX, 1 figur
Two-Loop Effects and Current Status of the 4He+ Lamb Shift
We report on recent progress in the treatment of two-loop binding corrections
to the Lamb shift, with a special emphasis on S and P states. We use these and
other results in order to infer an updated theoretical value of the Lamb shift
in 4He+.Comment: 11 pages, nrc1 style; paper presented at PSAS (2006), Venic
Screened self-energy correction to the 2p3/2-2s transition energy in Li-like ions
We present an ab initio calculation of the screened self-energy correction
for (1s)^2 2p3/2 and (1s)^2 2s states of Li-like ions with nuclear charge
numbers in the range Z = 12-100. The evaluation is carried out to all orders in
the nuclear-strength parameter Z \alpha. This investigation concludes our
calculations of all two-electron QED corrections for the 2p3/2-2s transition
energy in Li-like ions and thus considerably improves theoretical predictions
for this transition for high-Z ions
- …
