1,528 research outputs found

    modCHIMERA: A novel murine closed-head model of moderate traumatic brain injury

    Get PDF
    AbstractTraumatic brain injury is a major source of global disability and mortality. Preclinical TBI models are a crucial component of therapeutic investigation. We report a tunable, monitored model of murine non-surgical, diffuse closed-head injury—modCHIMERA—characterized by impact as well as linear and rotational acceleration. modCHIMERA is based on the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) platform. We tested this model at 2 energy levels: 1.7 and 2.1 Joules—substantially higher than previously reported for this system. Kinematic analysis demonstrated linear acceleration exceeding injury thresholds in humans, although outcome metrics tracked impact energy more closely than kinematic parameters. Acute severity metrics were consistent with a complicated-mild or moderate TBI, a clinical population characterized by high morbidity but potentially reversible pathology. Axonal injury was multifocal and bilateral, neuronal death was detected in the hippocampus, and microglial neuroinflammation was prominent. Acute functional analysis revealed prolonged post-injury unconsciousness, and decreased spontaneous behavior and stimulated neurological scores. Neurobehavioral deficits were demonstrated in spatial learning/memory and socialization at 1-month. The overall injury profile of modCHIMERA corresponds with the range responsible for a substantial portion of TBI-related disability in humans. modCHIMERA should provide a reliable platform for efficient analysis of TBI pathophysiology and testing of treatment modalities.</jats:p

    Advection of vector fields by chaotic flows

    Get PDF
    We have introduced a new transfer operator for chaotic flows whose leading eigenvalue yields the dynamo rate of the fast kinematic dynamo and applied cycle expansion of the Fredholm determinant of the new operator to evaluation of its spectrum. The theory hs been tested on a normal form model of the vector advecting dynamical flow. If the model is a simple map with constant time between two iterations, the dynamo rate is the same as the escape rate of scalar quantties. However, a spread in Poincar\'e section return times lifts the degeneracy of the vector and scalar advection rates, and leads to dynamo rates that dominate over the scalar advection rates. For sufficiently large time spreads we have even found repellers for which the magnetic field grows exponentially, even though the scalar densities are decaying exponentially.Comment: 12 pages, Latex. Ask for figures from [email protected]

    Integrated knowledge translation strategies that enhance the lives of persons with dementia and their family caregivers

    Get PDF
    Purpose: To understand the lived experience of persons with dementia and their family caregivers who receive home care in northern Alberta, Canada, and to reveal how integrated knowledge translation (iKT) strategies influence the uptake of best available dementia care evidence over time. Sample: Three persons living with dementia and thirteen family caregivers were interviewed at the beginning of the study, nine months after implementation of the knowledge broker (KB), and six months after termination of the KB role (total interviews = 41). Method: The PARiHS framework guided our longitudinal case study that included two rural home care centres. A qualitative interpretive descriptive approach was used. A KB was hired for 12 months to facilitate the development of different iKT strategies with staff. Site A developed two strategies: 1) a planning meeting to discuss local needs and suggestions for improving access to dementia care information and community supports; and 2) the development of an information package. Site B focused on working through modules of the U-First program that entailed dementia education and training for the home care providers (HCPs). They then used the U-First wheels with clients during their home visits. Findings: Persons living with dementia spoke of both positive and negative aspects of their dementia journey and how they attempted to manage their lives. Family caregivers struggled to find the best approaches and supports to use to enable their family member with dementia to remain at home for as long as possible. iKT strategies such as a KB, the information resource package developed by the HCPs, use of the U-First modules and wheels, and a support group were examples of effective iKT. Conclusion: iKT strategies and projects increased access to dementia care information and supports. These assisted caregivers to better care for their family member for longer periods at home. Keywords: Persons living with dementia, family caregivers, integrated knowledge translation strategies, rural, and home car

    Anionic surfactant solutions under shear using dissipative particle dynamics

    Get PDF
    We present a dissipative particle dynamics study of surfactant solutions under shear, which allows us to investigate their rheological properties. We consider a variety of concentrations and phase structures, including micellar solutions and liquid crystal phases. It is shown that the viscosity of micellar solutions increases as a function of concentration, in agreement with what is expected from experimental data. We also show that micelles can exhibit shear-thinning behaviour when a shear force is applied, which is a result of micelles breaking down into smaller aggregates. Lamellar and hexagonal phases are found to orientate under the application of shear, in agreement with experimental observations. It is normally suggested that lamellar phases under shear can exhibit a transition between orientations, as the shear rate is increased, usually suggested to be a result of lower viscosity. We calculate the viscosity for different lamellar phase orientations, showing that, although the viscosity of perpendicular orientations is lower than that of parallel orientations, we do not observe a transition to the perpendicular phase at high shear rates. Finally, we show that the choice of Schmidt number has a significant impact on the results, which is of importance for determining the correct behaviour via simulations

    Density probability distribution in one-dimensional polytropic gas dynamics

    Full text link
    We discuss the generation and statistics of the density fluctuations in highly compressible polytropic turbulence, based on a simple model and one-dimensional numerical simulations. Observing that density structures tend to form in a hierarchical manner, we assume that density fluctuations follow a random multiplicative process. When the polytropic exponent γ\gamma is equal to unity, the local Mach number is independent of the density, and our assumption leads us to expect that the probability density function (PDF) of the density field is a lognormal. This isothermal case is found to be singular, with a dispersion σs2\sigma_s^2 which scales like the square turbulent Mach number M~2\tilde M^2, where slnρs\equiv \ln \rho and ρ\rho is the fluid density. This leads to much higher fluctuations than those due to shock jump relations. Extrapolating the model to the case γ1\gamma \not =1, we find that, as the Mach number becomes large, the density PDF is expected to asymptotically approach a power-law regime, at high densities when γ<1\gamma<1, and at low densities when γ>1\gamma>1. This effect can be traced back to the fact that the pressure term in the momentum equation varies exponentially with ss, thus opposing the growth of fluctuations on one side of the PDF, while being negligible on the other side. This also causes the dispersion σs2\sigma_s^2 to grow more slowly than M~2\tilde M^2 when γ1\gamma\not=1. In view of these results, we suggest that Burgers flow is a singular case not approached by the high-M~\tilde M limit, with a PDF that develops power laws on both sides.Comment: 9 pages + 12 postscript figures. Submitted to Phys. Rev.

    Three Dimensional Secondary Ion Mass Spectrometry Imaging and Retrospective Depth Profiling

    Get PDF
    Secondary Ion Mass Spectrometry (SIMS) for three dimensional analysis of materials is an exciting and rapidly developing technique. We describe a framestore datasystem for ion microprobe instruments and present images and three dimensional SIMS data acquired and processed with this system. The concept of retrospective depth profiling is introduced, particularly as a means to optimise concentration detection limits. We examine the dependence of concentration detection limits on spatial resolution

    On waiting for something to happen

    Get PDF
    This paper seeks to examine two particular and peculiar practices in which the mediation of apparently direct encounters is made explicit and is systematically theorized: that of the psychoanalytic dialogue with its inward focus and private secluded setting, and that of theatre and live performance, with its public focus. Both these practices are concerned with ways in which “live encounters” impact on their participants, and hence with the conditions under which, and the processes whereby, the coming-together of human subjects results in recognizable personal or social change. Through the rudimentary analysis of two anecdotes, we aim to think these encounters together in a way that explores what each borrows from the other, the psychoanalytic in the theatrical, the theatrical in the psychoanalytic, figuring each practice as differently committed to what we call the “publication of liveness”. We argue that these “redundant” forms of human contact continue to provide respite from group acceptance of narcissistic failure in the post-democratic era through their offer of a practice of waiting

    Transient Shear Wave Propagation in a Viscoelastic Gel Cylinder: Comparison of Theory to MRI-Based Measurements

    Get PDF
    ABSTRACT Shear strain patterns in a cylindrical gelatin sample under transient angular acceleration were measured by tagged magnetic resonance imaging (MRI). Measured strain fields were compared to theoretical strain fields obtained by finite element (FE) simulation. Agreement between theory and experiment is very good. The current results support the utility of the experimental approach for tasks such as measurement of shear waves in brain tissue during angular acceleration of the skull. The results also show that a simple viscoelastic model is suitable to describe rapid shear deformation of a gel biomaterial
    corecore