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We present a dissipative particle dynamics study of surfactant solutions under shear, which allows us to
investigate their rheological properties. We consider a variety of concentrations and phase structures, including
micellar solutions and liquid crystal phases. It is shown that the viscosity of micellar solutions increases as
a function of concentration, in agreement with what is expected from experimental data. We also show that
micelles can exhibit shear-thinning behaviour when a shear force is applied, which is a result of micelles
breaking down into smaller aggregates. Lamellar and hexagonal phases are found to orientate under the
application of shear, in agreement with experimental observations. It is normally suggested that lamellar
phases under shear can exhibit a transition between orientations, as the shear rate is increased, usually
suggested to be a result of lower viscosity. We calculate the viscosity for different lamellar phase orientations,
showing that, although the viscosity of perpendicular orientations is lower than that of parallel orientations,
we do not observe a transition to the perpendicular phase at high shear rates. Finally, we show that the
choice of Schmidt number has a significant impact on the results, which is of importance for determining the
correct behaviour via simulations.

I. INTRODUCTION

Surfactants are common components of a wide range
of products, particularly in the cleaning and personal
care industries. Above the critical micelle concentra-
tion, surfactants self-assemble into different structures
(or ‘phases’) depending on their concentration in aque-
ous solution. Typical phases include micellar, hexagonal,
bi-continuous cubic, and lamellar structures. These dif-
ferent phases have different properties, in particular, the
rheological properties of micellar solutions are distinctly
different to those of the liquid crystalline mesophases.
Since the manufacturing processes for product-containing
surfactants most commonly involves the application of
shear, understanding the properties of surfactant solu-
tions under shear is of fundamental importance.
In this work, we focus on anionic, sodium lau-

ryl ether sulfate (SLES) surfactants of the form
CH3(CH2)12(OCH2CH2)nOSO3Na, which are common
components of personal care products. The degree of
ethoxylation n can vary in commercial products, typi-
cally taking a distribution of values. At room tempera-
ture, aqueous SLES solutions tend to progress through
phase transitions micellar→hexagonal→lamellar1 with
increasing concentration. Cubic phases can appear be-
tween the hexagonal and lamellar phases when the degree
of ethoxylation is large (n ≥ 3)2.
In this work, we present simulations of SLES surfac-

tant solutions under the influence of a shear force. These
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simulations are performed using dissipative particle dy-
namics (DPD), a mesoscopic technique which uses soft in-
teraction potentials between coarse-grained molecules to
reproduce liquid behaviour. We choose DPD over other
simulation techniques, such as molecular dynamics, since
DPD is able to reach longer time and length scales than
such alternative approaches. This makes DPD ideal for
studying the behaviour of surfactants while under shear-
ing.

Experimentally, micellar sodium dodecyl sulfate
(SLES with n = 0) aqueous solutions are generally re-
ported to be Newtonian, with the viscosity increasing
with concentration3,4. However, the shear rates in exper-
imental measurements using rotational rheometers are
typically significantly lower5,6 ( ≈ 10−3 − 103 s−1) than
those used in simulations5–7 ( ≈ 108 − 1012 s−1). The
shear rates used in the manufacturing process of prod-
ucts containing surfactants are also typically larger than
those which can be accessed by standard rheometer mea-
surements. SLES-based products, such as shampoos, are
often created using high shear mixers, which can gener-
ate shear rates ranging from 104 − 105 s−1 during the
mixing process8. For micellar systems the viscosity is ex-
pected to be influenced by micellar shape, the concentra-
tion of micelles and micellar interactions3,4,9,10. There-
fore it is of interest whether the application of shear at
large shear rates causes any changes to these properties,
thereby altering the viscosity of the system. Lyotropic
liquid crystalline mesophases typically exhibit very dif-
ferent rheological behaviour, possessing a viscosity which
is many orders of magnitude larger than that of micellar
systems. They can also show shear-thinning and time-
dependent3,11–16 properties.

A number of existing studies have used DPD to investi-
gate the rheological behaviour of surfactant systems17–21,
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although typically viscosity calculations can only be per-
formed at relatively high shear rates17,19,21,22, since the
viscosity calculation displays a large amount of noise at
decreasing shear rates17,22. Existing DPD studies pre-
dict shear-thinning behaviour for micellar systems17,18,21,
where micelles have been observed to change shape due
to the application of a shear force. Spherical micelles
can also stretch under shear flow20, where worm-like mi-
celles can then be broken up into small, spherical mi-
celles at high shear rates, resulting in a lower solution
viscosity17,18. Using DPD, it has been shown that surfac-
tant molecules can stretch in length as a result of shear20,
meaning that the radius of gyration can be dependent on
the shear rate23. While existing studies could be found
for micellar solutions, there are relatively few prior DPD
investigations studying the effect of shear on liquid crys-
tals. Therefore we aim to study solutions across a range
of concentrations, specifically the micellar, hexagonal and
lamellar phases.

One of the topics of interest in this work is the im-
pact of the Schmidt number, where the Schmidt number
Sc is defined as the ratio of kinematic viscosity ν and
mass diffusivity D: Sc ≡ ν/D = µ/ρD, where µ is the
dynamic viscosity, and ρ is the density. DPD typically
generates a Schmidt number which is more comparable
to that of a typical gas than a liquid. There is no general
consensus in existing literature about how important the
Schmidt number is in DPD simulations and the impact
it has on results, although it is a topic of interest24. In
DPD studies of polymer chains25, it was found that the
Schmidt number has no impact on the radius of gyration
of molecules Rg when no shear is applied. However, when
shear is applied there is a large difference in Rg at dif-
ferent Schmidt numbers. In contrast, other studies have
reported that the Schmidt number is unimportant in de-
termining rheology26, making this a key area of interest.

Experimentally, it is generally reported that the lamel-
lar and hexagonal phases orientate under the application
of shear27–34. Therefore one of the aims of this work is
to investigate the orientation that mesophases take un-
der shear. Lamellar phases have been shown to tend to
take one of two orientations, with bilayers stacking either
parallel or perpendicular to the direction of flow. For
SLE3S solutions, textures viewed under a polarised opti-
cal microscope indicate a parallel alignment under shear2,
which is generally the case for most surfactant systems.
Both experiments31,32,35 and simulation34 have suggested
that, for some systems, there is a transition from the par-
allel orientation to the perpendicular orientation at very
high shear rates (although for other systems the parallel
orientation persists at high shear rates33). A commonly
cited reason for this transition is that the perpendicu-
lar orientation34,35 possesses a lower viscosity. Similarly,
hexagonal solutions tend to exhibit two different orien-
tations under shear: either an in-shear-plane orientation
or an out-of-shear-plane ‘log-rolling’ orientation27. How-
ever, the alignment of hexagonal rods along the flow di-
rection is the most commonly reported preference28–30.
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FIG. 1: Coarse-grained representation of SLES
molecules used in this work, where beads are coloured
according to their type. The number of ethylene oxide

beads n is varied.

This article begins with an overview of the DPD
method used to simulate SLES solutions at various
concentrations. We then provide details on how the
viscosity is determined using two approaches: a non-
equilibrium method in which shear flow is induced using
Lees-Edwards boundary conditions; and an equilibrium
method based on pressure fluctuations. We study the im-
pact that shear has on micellar solutions, and how this
influences the resulting viscosity. In this study, we vary
parameters such as concentration, degree of ethoxylation,
shear rate, and Schmidt number. The Schmidt number
can be varied with the application of an external thermo-
stat, which can be used to reproduce a Schmidt number
closer to that of a realistic fluid than traditional DPD
would allow. Finally, we present a study of the impact
that applying shear force has on lamellar and hexagonal
liquid crystal phases.

II. SIMULATION METHODOLOGY

A. Dissipative particle dynamics

1. Overview

The simulation method of dissipative particle dynam-
ics (DPD) coarse grains molecules, representing groups of
atoms as ‘beads’. The coarse-graining used in this work
for SLES molecules is taken from the parameterisation
of Anderson et al. (2018)36, where the coarse-graining
is shown in Fig. 1 and water beads represent two water
molecules. The head group bead [CH2OSO−1

3 ]− is neg-
atively charged, and the positively charged counter ions
Na+ are partially hydrated with two water beads. The
ethylene oxide groups are represented as a single bead
[CH2OCH2]. The alkyl chain is coarse-grained such that
one bead represents two carbon atoms [CH2CH2] and the
alkyl chain is terminated by a bead representing a methyl
group [CH3].
The force on an individual bead from non-bonded in-

teractions is made up of a combination of forces,

fi =
∑

j ̸=i

(FC
ij + F

D
ij + F

R
ij + F

E
ij) (1)

where Fij are the forces acting on bead i by bead j. FC
ij

is the conservative force, F
D
ij the dissipative force, F

R
ij
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the random force, and F
E
ij is the electrostatic force. The

conservative force is repulsive and takes the form

F
C
ij =

{

aij(1−
rij
rC

)r̂ij for rij < rC

0 for rij ≥ rC
(2)

where aij is an interaction parameter between beads i
and j, rC is the cut-off radius, rij = ri − rj , rij = |rij |,
r̂ij = rij/|rij |. The aij and rC values for each bead pair
are obtained from Anderson et al. (2018)36.

The forces FD
ij and F

R
ij are given by

F
D
ij = −γωD(rij)(r̂ij · vij)r̂ij , (3)

F
R
ij = σωR(rij)ζij r̂ij∆t−1/2, (4)

where ωD and ωR are distance-dependent weight func-
tions that vanish for rC < r, γ is a friction coefficient, σ
is the noise amplitude, vij = vi−vj , ζij(t) is a randomly
fluctuating Gaussian variable, with zero mean and unit
variance.
It was shown37 that one of the weight functions, can

be chosen arbitrarily and this fixes the other weight func-
tion, in order to satisfy the fluctuation-dissipation theo-
rem. The relationship between the two functions is

ωD = [ωR]2 (5)

and the relationship between amplitudes

σ2 = 2γkBT, (6)

where kB is the Boltzmann constant and T is the tem-
perature These two forces together form a thermostat,
maintaining the temperature of the system. The func-
tion used for ωD is

ωD =

{

(1−
rij
rC

)2 for rij < rC,

0 for rij ≥ rC.
(7)

To bond beads together to form long chain molecules,
two additional forces are introduced to Eq. 1. The first
is a simple harmonic spring force

F
S
ij =

∑

j

C(rij − l0)r̂ij , (8)

where the sum runs over all of the beads which are
directly connected (i.e. those which are chemically
bonded) to bead i. C = 150 (DPD units) is the
spring constant and l0 is an unstretched bond length.
Bond lengths are set according to the number of heavy
atoms36 ni and nj in the bonded beads, calculated as
l0 = 0.1(ni + nj)− 0.01.
A further bonding force takes into account the molec-

ular stiffness, where the potential defining this force is

U =
1

2
K(θ − θ0)

2 (9)

where the angle θ is defined as the scalar product of the
two bonds connecting beads i− 1, i and i, i+1 (in other
words the angle between adjoining bonds), K = 5 (DPD
units) is a bending constant, and θ0 = 180◦ is a preferred,
equilibrium angle.
Finally, to model the electrostatic pair potential be-

tween charged beads, we use Slater-type charge smear-
ing, where the potential UE between two charged beads
i and j is given by

UE =
Γqiqj
4πrij

[1− (1 + β∗rij)e
−2β∗rij ] (10)

where qi and qj are the charges, Γ = e2/(kBTϵ0ϵrrC)
is a dimensionless electrostatic coupling parameter, and
β∗ = 0.929r−1

C is the tuneable Slater parameter.

2. Thermostatting

DPD does not require a thermostat to maintain the
temperature of the system, instead using the dissipative
and random forces to control the temperature. The dis-
sipative force parameter γ can be used to alter the dy-
namic viscosity µ of the simulated fluid. However, the
relationship between γ and µ in DPD is fairly complex38.
Furthermore, standard choices for parameters in F

D
ij and

F
R
ij lead to a viscosity which is extremely low compared

to what is expected for real fluids. Similarly, the mass
diffusivity is also too high, and this (combined with low
viscosity) generates a fluid with an unrealistically small
Schmidt number (on the order of ≈ 1). This low Schmidt
number is suitable for gases, but too small for liquids
(≈ 1000). Since using standard DPD alone it is diffi-
cult to simulate a realistic fluid viscosity and Schmidt
number, we apply the Stoyanov-Groot39 external pair-
wise thermostat during viscosity calculations. This also
allows us to vary the Schmidt number to investigate its
influence on the results.
The Stoyanov-Groot thermostat was specifically devel-

oped for DPD particle systems and is a combination of
the Lowe-Anderson40 thermostat and a thermostat which
is similar to the Nosé-Hoover41 thermostat, coupled in
parallel. The thermostat works by selecting pairs of
beads and altering their velocity after each time step.
The velocity is altered such that the temperature of the
system is maintained. For each pair of beads that is
selected, we choose between the Nosé-Hoover thermo-
stat and the Lowe-Anderson thermostat with probabil-
ity P = Γ∆t (where ∆t is the integration time step and
Γ an exchange frequency). The resulting fluid viscos-
ity is linearly proportional39 to the choice of parame-
ter Γ, while diffusivity D ∝ 1/Γ, meaning that Schmidt
number Sc ∝ Γ2. When the switching probability P
is low, the Nose-Hoover thermostat dominates, produc-
ing a fluid with a high diffusion coefficient and low vis-
cosity. When P is high the Lowe-Anderson thermostat
dominates, producing a fluid with low diffusion and high
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viscosity. Switching between the two (in the form of
the Stoyanov-Groot thermostat) allows us to vary the
Schmidt number easily and significantly.

3. Geometrical Size of Micelles and Molecules

The radius of gyration, RG is used to quantify the size
and shape of micelles. This is calculated using

R2
G =

1

NM

NM
∑

k=1

(rk − rM)2 (11)

where rk is the position of a particle in a micelle consist-
ing of NM beads and rM is the centre-of-mass for the mi-

celle rM =
∑NM

i miri/
∑NM

i mi. Similarly, the size and
shape of individual molecules are also quantified using
their radius of gyration Rg (note the variation of sub-
script for the radius of gyration of molecules Rg vs. that
for the whole micelle RG). This is defined as the average
squared distance of the beads making up the molecule,
from its centre of mass. Therefore, for a single molecule

R2
g =

1

NS

NS
∑

k=1

(rk − rS)
2, (12)

where NS is the number of particles in the surfactant
molecule and rS is the centre-of-mass for the surfactant
molecule.

B. Shear Flow and Viscosity

1. Equilibrium methods

A typical method for calculating viscosity in molecu-
lar simulations uses Green–Kubo relations42,43, using the
auto-correlation function (ACF):

η =
V

kBT

∫ ∞

0

⟨σαβ(t0)σαβ(t+ t0)⟩t0dt (13)

where σαβ are the off-diagonal components of the stress
tensor, α and β represent the x, y, and z directions and
V is the simulation volume. Angular brackets indicate
an average over different time origins t0. While the stress
tensor consists of nine components σαβ defining the state
of stress at a point inside the simulation box, only the
off-diagonal components are required for calculating the
viscosity. Since σαβ = σβα, there are three unique off-
diagonal components. For isotropic phases, only inte-
gration over one of these stress tensor components is re-
quired to calculate η, since all off-diagonal components
should produce equivalent values for the viscosity. This
integrand decays to zero in the limit of a long t, in prac-
tice, the integration is usually performed up to time tC,
beyond which the integrand is negligible. This method
calculates a viscosity without the application of shear and

FIG. 2: Illustration of Lees-Edwards boundary
conditions44 for shear flow. The shear rate γ̇ is
calculated using the velocity vx of the box.

therefore calculates a zero-shear viscosity. Therefore, it
is most commonly used for Newtonian fluids where the
viscosity is independent of the shear rate.

2. Non-equilibrium methods

In order to investigate fluids which are expected to
exhibit non-Newtonian behaviour, a non-equilibrium ap-
proach should be taken. In this work, we used Lees-
Edwards boundary conditions44, which are an adapta-
tion of standard periodic boundary conditions for induc-
ing shear flow. The theoretical implementation of these
boundary conditions is illustrated in Fig. 2. Domains
which are periodic to the simulation box are given a ve-
locity which is proportional to their vertical position (rel-
ative to the simulation box). As a bead in the simulation
box moves through the boundary at either the top or
the bottom of the domain, its velocity and tangential
position change as a result, generating a linear velocity
profile over the simulation box domain. We note that it
has been shown that Lees-Edwards boundary conditions
for DPD can display non-physical jumps in the velocity
profiles45,46. However, this behaviour only manifests at
high dissipation rates (drag coefficient γ in Eq. 3) and is
due to the velocity dependence of the DPD thermostat.
In this work we see no unnatural jumps in the velocity
profiles for the value of γ used and for the values of shear
rate used.
For an isotropic fluid, such as micellar solutions, the

shear viscosity can be simply calculated using the stress
tensor σαβ and the applied shear rate γ̇. For a shear
flow defined by velocity field v = vx(y)x̂, there is only
one non-zero off-diagonal component of the stress tensor:
σxy (or the equivalent σyx). The shear rate is calculated
as γ̇ = ∂vx/∂y, therefore the viscosity is calculated by

σxy = −η
∂vx
∂y

. (14)
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FIG. 3: Definition of Miesowicz viscosity coefficients η1,
η2, and η3. Measurement of the coefficients ηi involved
orientating the director of the liquid crystal D relative

to the flow velocity.

The stress tensor is calculated using the Irving-Kirkwood
definition47, by summing components of pairwise forces
and vectors between bead pairs. This is calculated as

σαβ =
∑

i

(mivi,αvi,β +
∑

j>i

Fij,αrij,β), (15)

where the sum is over all beads i in the system (although,
as noted above, only the component defined by α = x and
β = y is needed to calculate the viscosity). Averaging the
value calculated over a large number of time steps allows
us to find an accurate value for η.
However, for a nematic or a smectic liquid crystal,

there can be considered to be three different shear viscos-
ity coefficients, depending on the direction of shear flow
relative to director D. Miesowicz viscosity coefficients η1,
η2, or η3 are defined from the shear viscosities when the
director lies along the x, y, or z axis, respectively (see
Fig. 3). A summary of the three viscosities in relation
to the flow velocity v follows48:

• η1 is when director D is parallel to flow velocity;

• η2 is when D is parallel to the velocity gradient;

• η3 is when D is orthogonal to both the flow and
the velocity gradient.

III. SIMULATION SET-UP

The DPD phase structures for SLES solutions are re-
ported in previous works1, where it was observed the
micellar and lamellar phases spontaneously form under
equilibrium conditions, while the formation of hexagonal
phases requires a small amount of shear to be applied
to encourage equilibration. In this work we initialise our
simulations at concentrations across the phase diagram,
using the pre-equilibrated phases from our previous work,
where the equilibrium phase diagram is summarised in
Fig. 4.
Simulations are performed for cases with different de-

grees of ethoxylation, where we vary the number of ethy-
lene oxide groups in the range 0 ≤ n ≤ 3. We also simu-
late a case with a distribution of n (in order to replicate

0 1005025 75

AES

n = 0

n = 1

n = 2

n = 3

Concentration (wt%)

HexagonalMicellar

Lamellar

Worm-like Micellar

Imperfect LamellarHexagonal/Lamellar

FIG. 4: Equilibrium phase diagrams for varying degrees
of ethoxylation n, originally presented in Hendrikse et

al1.

the distribution that would be found in a commercial
product) with an average n̄ ≈ 1, which we refer to in this
work as AES. Our simulated AES is made up of: n = 0
(52.7 wt.%), n = 1 (25.8 wt.%), n = 2 (14.0 wt.%), and
n = 3 (7.5 wt.%).

A. Micellar Solutions

For micellar solutions, we take two approaches to cal-
culating the viscosity. The first is using the stress ten-
sor auto-correction function, and the second is via the
application of shear. In both cases, the Stoyanov-Groot
thermostat is used. Using the equilibrium approach, a se-
lection of collision parameter values are trialled ranging
from Γ = 0 (i.e. a pairwise variation of the Nosé-Hoover
thermostat) to Γ = 250. The time step ∆t = 0.01 is used
for all micellar calculations.
When shear is applied, we trial different shear rates

varying from γ̇ = 1.2 × 10−6 to γ̇ = 1.2 × 10−1 (DPD
units). While there are different approaches to the con-
version of DPD units to SI units, one common method
for converting the time scale of DPD simulations results
from matching the energy kBT , to the experimental value
at room temperature. This results in an estimate for
the time scale of τC = 2.16 × 10−12 s (see appendix A
for details). This means that the shear rate γ̇ = 1 in
DPD units converts to SI units of γ̇ = 4.61 × 1011 s−1.
Since rheometer measurements are typically1 conducted
at around γ̇ ≈ 10−3−103 s−1, the usual shear rates used
in simulations are very large. One of the main barriers
to achieving lower shear rates is the noise-to-signal ratio
in the stress tensor.
For pure water at 25◦C, experimentally determined

values for the self-diffusion coefficient and the viscosity
find a Schmidt number of approximately Sc ≈ 400. This
means that an equivalent Schmidt number in DPD would
be generated with a collision parameter of Γ ≈ 45 (see
appendix B), which is the primary value we use for these
calculations. In addition, we perform simulations using
Γ = 250, in order to investigate whether the Schmidt
number has any influence on the behaviour of micelles
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under shear and the quantities that we calculate.

B. Lamellar and Hexagonal Phases

Lamellar and hexagonal phases are expected to
show shear-thinning behaviour, and therefore the auto-
correlation function method is not appropriate for deter-
mining their viscosity. Instead, we perform simulations
to study the behaviour of the liquid crystal phases under
the application of shear. Lyotropic liquid crystals typi-
cally have very high viscosity values1 and very low values
of diffusion. The water self-diffusion coefficient in micel-
lar solutions typically takes a value which is close to that
of water self-diffusion in pure water49 (2.3× 10−9 m2s−1

at 25◦C50). In contrast, the water self-diffusion in liq-
uid crystals is typically measured to be up to an order of
magnitude smaller49,51. Similarly, the self-diffusion co-
efficient for the surfactant molecules can be up to two
(or greater) orders of magnitudes smaller in the liquid
crystalline phases vs. the micellar solutions49,52.

The effect of higher viscosity and lower diffusion co-
efficient generates an even larger value of the Schmidt
number, although due to the non-Newtonian nature of
the liquid crystals it is not possible to obtain an exact
value. For these cases, we chose to simulate using col-
lision parameter Γ = 250, which requires a lowering of
the time step to ∆t = 0.001. This choice of Γ generates
a Schmidt number for water beads of ≈ 10, 000 (i.e. 25
times larger than in the micellar solutions using Γ = 45).
This value is selected due to it being one of the largest
Schmidt numbers obtainable, without having to further
lower the time step (see appendix B).
Experimentally, both the hexagonal27–30 and

lamellar31–34 phases have been shown to exhibit
phase orientation under the application of shear. For
a lamellar phase, there is generally a preference to
orientate in either the parallel or perpendicular orien-
tation (see Fig. 5), while the hexagonal rods at low
temperatures tend to align in the direction of shear flow
(see Fig. 6).
In order to form a perfect parallel or perpendicular

arrangement of lamellar layers under the application of
shear (i.e. an arrangement such that the lamellar lay-
ers are parallel with one of the cubic box surfaces), the
box size L should be chosen to be an integer multiple
of the equilibrium d-spacing. If a non-integer box size
is chosen, then the layers can form at diagonal orienta-
tions, even under the application of shear. This is likely
to be because the potential energy benefit of forming at
the correct d-spacing value is greater than the impact of
shear. The equilibrium d-spacing was reported in previ-
ous works1, calculated in boxes of size L = 40. For the
n = 0 with c = 70 wt.% case, the equilibrium d-spacing is
reported as d = 5.71, and an integer number of lamellar
layers are formed by a box of size L = 40 (7 layers). Ad-
ditional simulations are conducted for the n = 1 and AES
distribution of n at 70 wt.%, where we use a box size of

y
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Flow

a) b)

FIG. 5: Lamellar layers which are stacked in a) the
direction of the velocity gradient (parallel orientation)

and b) those which are stacked along the velocity
gradient-neutral plane (perpendicular orientation).

Both orientations can form under the application of a
shear force.

y

z

x

a) b)

FIG. 6: When shear flow is induced (here in the
x-direction as indicated by the blue arrow), the rods in

the hexagonal phase align in either in (a) an
in-shear-plane or (b) an out-of-shear-plane (log-rolling)

orientation.

L = 39 for n = 1 (equilibrium d-spacing value d = 6.49
producing 6 layers) and L = 25 for AES (equilibrium
d-spacing value d = 6.32 producing 4 layers). Shear is
applied so that the flow velocity is directed along the x
axis and a linear velocity profile is generated along the
y-axis.

IV. RESULTS AND DISCUSSION

A. Viscosity of micellar solutions

In this section, we calculate the viscosity using the au-
tocorrelation method (Eq. 13), where no external shear
force needs to be applied for the calculation. Data ac-
quisition of the stress tensors σxy, σxz and σyz occurs
after the micellar simulation boxes are equilibrated (i.e.
after they have reached an equilibrium number of mi-
celles as quantified in previous work1). The equilibrium
aggregation numbers for different micellar solutions are
given in Table I, where we reported that the aggrega-
tion numbers are under-predicted when compared with
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c = 7 wt.% c = 10 wt.% c = 20 wt.%

n = 0 40 52 75

n = 1 37 44 88

n = 2 38 50 87

n = 3 36 47 77

AES 43 53 85

TABLE I: Final mean aggregation number Nagg for
micellar solutions of varying concentration c and degree

of ethoxylation n.

experimental results. For example, experimentally the
the mean aggregation number of SDS solutions (n = 0)
at concentrations 10 wt.% possess aggregation numbers
Nagg = 104 − 10853,54, and similarly at higher concen-
trations Nagg = 104− 11253,55. This means that the ag-
gregation numbers at 10 wt.% and 20 wt.% in DPD are
around ≈ 50 wt.% and ≈ 70 wt.% of the experimental
values, respectively.

The aggregation number is calculated as a number av-
erage, and therefore Nagg is defined as the mean number
of molecules per micelle. Molecules are defined as being
in the same aggregate when the distance between their
tail beads is less than a defined cut-off rc−off which we
chose as rc−off = rC = 1. Only one tail bead pair dis-
tance must be less than this cut-off for them to be defined
as belonging to the same micelle.

For the calculation of viscosity, one must apply a cutoff
in Eq. 13, for which to integrate over time t. We choose
the cutoff tC = 1.8 for all simulation cases for consistency,
at a value at which all auto-correlation functions have de-
cayed to approximately zero. Fig. 7 shows the viscosity
for solutions with varying concentration, when collision
parameter Γ = 0 is used (for reference the viscosity of wa-
ter obtained using Γ = 0 is η = 0.70). The viscosities for
different ethoxylation values n are very similar, with no
trend in n being observable due to overlapping error bars.
However, there is a clear growth in the viscosity with
increasing concentration. The rate of growth with con-
centration is, however, at a reduced rate when compared
with what is expected from experimental measurements3.
This could partially be explained by the under-prediction
of the aggregation number in the simulations since there
is evidence that the viscosity increases with increasing
aggregation number.

While Γ = 0 produces an unrealistically low Schmidt
number for fluids, the autocorrelation function decays as
a function of time more slowly when Γ is small. Therefore
for low Γ values, it is easier to find a value for the vis-
cosity. It was found that at larger Γ values, the autocor-
relation function decayed too quickly to calculate precise
viscosity values (see Appendix C for more details).

However, we investigate the impact which Γ has on the
molecular radius of gyration Rg. The radius of gyration
is found to be independent of the collision parameter Γ
for all simulation cases of n and concentration c. An ex-
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FIG. 7: Viscosity of micellar solutions using the
autocorrelation method (Γ = 0). The error bars

represent the standard deviation of the values obtained
from different off-diagonal stress tensor components.

Thermostat parameters Radius of gyration Rg

Γ = 0 0.8541± 0.0007

Γ = 10 0.8548± 0.0006

Γ = 45 0.8546± 0.0005

Γ = 250 0.8543± 0.0005

TABLE II: Average Rg for micellar solutions with n = 0
and c = 20 wt.% when collision parameter Γ is varied.
The uncertainties represent the standard deviation over

the data acquisition period.

ample of this for one simulation case is shown in Table
II. This is in agreement with previous DPD work for
polymers25. Therefore we conclude from these calcula-
tions that although the choice of Γ does not necessarily
lead to a physically meaningful value for the Schmidt
number, the DPD simulated results under equilibrium
are not particularly sensitive to it. Following this, we
now investigate whether this is also true for micellar so-
lutions which are not under equilibrium conditions when
shear is applied.

B. Micellar solutions under shear

In this section, we study the impact that shear has
on the micelles and the calculated viscosity. Simulation
cases investigated include when n = 0 (10 wt.% and 20
wt.%), n = 1 (10 wt.% and 20 wt.%) and AES (10 wt.%
and 20 wt.%). We first present the impact of shear rate
on the micellar shape and the impact this has on the
molecules, before calculating the viscosity as a function
of shear rate. Figs. 8 and 9 show examples of micellar
solutions under shear for two different collision parame-
ters Γ = 45 and Γ = 250, which will be analysed in this
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section.

1. Micellar Shape

a. Collision parameter Γ = 45. When the shear rate
is low (γ̇ ≤ 1.2 × 10−4) there is little change in micellar
shape compared with equilibrium simulations. However,
at high shear rates γ̇ ≥ 1.2 × 10−3 changes in shape are
observed, as illustrated in Fig. 8.
At higher shear rates longer, and more worm-like mi-

celles become aligned in the direction of the shear flow.
An increase to γ̇ = 1.2× 10−2 causes micelles to notice-
ably elongate in the direction of shear flow. Finally, an
increase to γ̇ = 1.2× 10−1 breaks down the micelles into
a nematic phase. This abrupt change occurs at the same
shear rate for all concentrations and ethoxylation values
simulated.
The shape and aggregation number Nagg has a signif-

icant impact on the micellar radius of gyration RG, as
shown in Fig. 10. Moderate amounts of shear slightly
enhance the aggregation number, by encouraging free
molecules to join aggregates. Once the micelles start to
significantly stretch, they break into smaller aggregates,
decreasing the mean aggregation number. The radius
of gyration RG grows significantly under shear, mostly
due to the stretch of the micelles; once they break down
into smaller aggregates at high shear rate, RG drops ac-
cordingly. Both the 10 wt.% and 20 wt.% concentrations
show similar trends with increasing shear rate.
Fig. 11 shows the impact of shear rate on the radius of

gyration of the individual molecules Rg, with the effects
most pronounced when micelles have completely broken
down. It might be expected that Rg would increase with
shear rate due to stretching, however, the opposite trend
is found.
b. Collision parameter Γ = 250. The impact of

shear on the n = 1 with 20 wt.% concentration case is
shown in Fig. 9 (equivalent to the case in Fig. 8 with
Γ = 45), and we observe the same transition from spher-
ical micelles to work-like micelles, followed by a break-
down of micellar structure. Increasing the value of Γ is,
however, found to lower the value of the shear rate at
which the transition from spherical micelles to stretched
micelles occurs. Therefore disaggregation also occurs at
a lower shear rate.
The impact of Γ on the mean aggregation number and

radius of gyration of micelles is shown in Fig. 12. There
is relatively little difference between the two choices of
Γ at lower shear rates. Some slight differences begin to
appear at higher shear rates, although this is likely to
be related to the transition from non-spherical micelles
occurring at a lower shear rate when Γ = 250.
It was shown in the previous section, that varying the

collision parameter Γ had minimal effect on the radius
of gyration of molecules Rg when no shear is applied.
The variation of Rg with shear rate, for both values of
Γ trialled, is shown in Fig. 13. The radius of gyration

displays very different behaviour at extremely high shear
rates when the micelles have largely broken down, indi-
cating that the choice of Γ has more of an influence on the
individual molecules than it does on micelles. Symeoni-
dis et al.25 reported for polymer systems that the radius
of gyration of molecules grows with increasing shear rate,
irrespective of Γ. An increase in Rg with shear rate has
been observed in simulations by other authors56, as well
as theory57 and experiment58. This increase can be ex-
plained by a stretch of the molecule. In our case, the
radius of gyration does indeed increases when Γ = 250,
at shear rates when micelles have largely been broken
down (γ̇ > 1.3 × 10−3). However, we find that when
Γ = 45, the radius of gyration decreases at high shear
rates. This decrease coincides with micelle breakdown
(γ̇ > 1.3 × 10−2). This decrease could be explained by
the fact that micelle formation has been shown to in-
crease the radius of gyration59. We believe that there
are two competing factors influencing Rg, and there is a
competition between the influence of the shear rate and
phase structure.

2. Viscosity Calculation

Eq. 14 is used to calculate the viscosity when shear is
applied. It is found that there is too much noise in the
stress tensor when γ̇ < 1.2 × 10−4 in order to obtain a
converged value for viscosity. Therefore Fig. 14 shows
the viscosity calculated at higher shear rates for varying
concentrations and degrees of ethoxylation.
We observe a shear thinning behaviour, which is re-

lated to the change in the micellar shape and their break-
down. As discussed in section IIIA, the shear rates used
are high when compared with those used in typical ex-
periments. This explains why we do not see a Newto-
nian relationship, since the shear rates used in experi-
ment are unlikely to lead to any micellar breakdown or
shape changes, like the ones observed in simulation.
Due to the difficulty in accessing lower shear rates, it

can’t be determined if the viscosity eventually plateaus
to a Newtonian relationship with the shear rate at lower
shear rate values (i.e. in the region in which the micelles
are not thought to be changing shape). However, at the
lowest shear rate value, the viscosity calculated for AES
and n = 1 solutions at 20 wt.% is significantly larger than
for when n = 0. This is in contrast with the 10 wt.%
case where the viscosity calculated for n = 0, n = 1 and
AES is more similar. The large difference in viscosity at
20 wt.% and minimal difference at 10 wt.% between n
values is qualitatively consistent with experiment1,3.

C. Orientation of liquid crystals

In this section, we consider the behaviour of higher
concentration systems which form liquid crystal phases.
We begin by performing experiments on simulation boxes
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(a) γ̇ = 1.2× 10−4 (b) γ̇ = 1.2× 10−3

(c) γ̇ = 1.2× 10−2 (d) γ̇ = 1.2× 10−1

FIG. 8: A micellar solution (c = 20 wt.% and n = 1) at varying shear rates, where shear is applied in the x-direction.
Note that only surfactant molecules are shown for clarity. Calculation performed using collision parameter Γ = 45.

(a) γ̇ = 1.2× 10−4 (b) γ̇ = 1.2× 10−3

(c) γ̇ = 1.2× 10−2 (d) γ̇ = 1.2× 10−1

FIG. 9: A micellar solution (c = 20 wt.% and n = 1) at varying shear rates, where shear is applied in the x-direction.
Note that only surfactant molecules are shown for clarity. Calculation performed using collision parameter Γ = 250.
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with initially random placement of molecules, in order
to determine the preferred orientation of the hexagonal
and lamellar phases under shear. For lamellar phases,
we investigate solutions with 70 wt.% concentration and
observe that the lamellar layers orientate in the parallel
orientation under shear γ̇ ≤ 6 × 10−2 for all values of
n trialled (n = 0, n = 1 and AES). This is consistent
with experimental observations for SLES surfactants2.
While it has been reported that some DPD simulations
have shown transition from the parallel orientation at
low shear rates, to the perpendicular phase at higher
shear rates60–62, this is not observed in this work. An
increase to γ̇ = 6 × 10−1 leads to a breakdown of the
parallel layers, and the system is no longer a lamellar
phase. The phase most closely resembles a nematic liq-
uid crystal phase at these high shear rates, due to the fact
that although the lamellar layers have broken down and
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FIG. 14: Viscosity calculated at varying shear rates from applying shear in DPD calculations. Individual plots
correspond to the ethoxylation n, while in each plot two different concentrations are shown. Error bars correspond

to the standard error. The horizontal black line indicates the viscosity of water at a value of Γ = 45.

FIG. 15: Solution with n = 0 and c = 70 wt.% under
shear, at γ̇ = 6× 10−2 (Fig. a) and γ̇ = 6× 10−1 (Fig.
b). Flow velocity is in the x-direction and the velocity

gradient the y-direction. An arrow represents the
director and beads are coloured by: surfactant (pink),

sodium ion (orange), and water (light blue).

there is now no positional order, the molecules still pos-
sess orientational order where molecules are parallel to
each other. These two cases, along with the orientation
of the director, are shown in Fig. 15.
For the lamellar phase, the director of the box is ap-

proximately defined as being in the direction parallel to
the normal of the layers (along the y-axis). Upon transi-
tion into the nematic phase, the director aligns approx-
imately along the direction of the shear flow (along the
x-axis). The director vector is calculated as the aver-
age orientational vector for all surfactant molecules in
the system, where the orientation vector is defined as the
vector between the sulfate head bead and the final tail
bead in each molecule. For the case shown in Fig. 15,
the director for the nematic phase is calculated as (0.96,
0.29, 0), in other words, it is at an angle of 17◦ to the
x-axis. The alignment of the director for a nematic crys-
tal as parallel to the shear surface is in agreement with
what is most commonly reported experimentally63. A se-
lection of intermediate shear rates between γ̇ = 6× 10−2

and γ̇ = 6× 10−1 are trialled in order to investigate the

possibility of an intermediate perpendicular orientation
(at shear rates γ̇ = 9× 10−2 and γ̇ = 3× 10−1), however
no evidence is found for the formation of a perpendicular
phase.
For the hexagonal phase, we study concentrations of

40 wt.%, and it is found that when shear (γ̇ = 6× 10−3)
is applied to the simulation box, hexagonal rods lie in
the in-shear-plane orientation, as described by Fig. 6.
This orientation of the hexagonal phase is consistent with
experiments for general surfactant systems27–30.

D. Lamellar Viscosity

Since the lamellar phases in this work take the paral-
lel orientation, calculating the viscosity would result in
a calculation of the Miesowicz viscosity component η2,
as described by Fig. 3. Although we see no evidence of
a natural transition to the perpendicular orientation of
the lamellar layers, simulations can still be performed in
order to investigate the viscosity component η3 (perpen-
dicular orientation). Since the perpendicular phase is not
induced at any shear rate from an initially random config-
uration, this can be performed by taking a lamellar phase
that is already in a parallel orientation, and rotating to
the perpendicular, before undertaking the viscosity cal-
culation. Some authors34,35,60 have argued that the tran-
sition to this perpendicular phase occurs naturally, due
to the perpendicular orientation having a lower viscosity
than the parallel. A comparison of the calculated viscos-
ity components η2 and η3, at high shear rates, is shown in
Table III. Although a transition to the perpendicular ori-
entation is not naturally observed at high shear rates, we
do conclude that the viscosity calculated for the perpen-
dicular orientation (η3) is indeed lower than the parallel
(η2). This suggests that the transition from the paral-
lel orientation to the perpendicular case is not entirely
determined by the viscosity, and that other factors may
influence the preferred orientation of the lamellar phase.
It is of interest that it has been observed31 that, in Cou-
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Shear Rate Perpendicular Viscosity Parallel Viscosity

6× 10−4 178± 8 300± 10

6× 10−5 82± 10 206± 41

TABLE III: Comparison of the perpendicular and
parallel viscosity (DPD units) for lamellar systems,

calculated for two shear rates.

n̂
Director

n̂
Director

Ψ

FIG. 16: Illustration of the orientation of the molecules
under shear. The molecules retain their parallel layers,
but are no longer parallel with the normal to the layer.

ette gap experiments, the orientation distribution is not
always constant across the gap. In particular, there can
be wall effects which result in a preferred parallel orien-
tation at high shear rates.

E. Molecular changes to the Hexagonal and Lamellar

phases

We now discuss the impact that shear has on the
molecules in liquid crystal phases. While the struc-
ture of the phases is visually unchanged with varying
shear rate (i.e. the shape and structure of the lamellar
layers and hexagonal rods remains visually unchanged),
the molecules may undergo stretching or shape changes
within the layers as a result of the shear force.
Consider angle Ψ, which is defined as the angle between

a normal to the lamellar layer surface n̂, and the director
of the surfactant molecules. This is illustrated in Fig.
16. Under shearing, the lamellar layers remain parallel
to the x − z plane, and therefore the normal to these
layers remains as n̂ = (0, 1, 0). The angle between the
director and the normal of the layers is shown in Fig.
17, where the molecules rotate to an angle within the
lamellar layers.
This movement has an effect on the molecular radius

of gyration Rg, which is demonstrated in Fig. 17. While
a significant amount of reorientation of the molecules is
found for shear rates at γ̇ = 6×10−4, only a small amount
of growth in the radius of gyration is found. When the
shear rate increases to γ̇ = 6×10−3, the molecules signif-
icantly orientate themselves, and the molecules’ stretch
corresponds to a growth in the radius of gyration.
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FIG. 17: Angle Ψ between the normal to the lamellar
layers and the director of the surfactant molecules, as
well as the radius of gyration, both as a function of
shear rate for molecules in the lamellar phase with

concentration c = 70 wt.% and n = 0.
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FIG. 18: The radius of gyration as a function of shear
rate for molecules in the hexagonal phase with

concentration c = 40 wt.% and n = 0.

At a shear rate of γ̇ = 6 × 10−2 (not shown in Fig.
17), the lamellar phase breaks down and the molecules no
longer exist in parallel layers. Based on the rate of growth
of angle Ψ in Fig. 17, the molecules at γ̇ = 6×10−2 would
have angle Ψ ≈ 1.2rad (linear extrapolation of the angle
versus the log values corresponding to γ̇ = 6× 10−3 and
γ̇ = 6 × 10−4). This is likely to be a reason that the
lamellar phase breaks down in the simulation box at this
shear rate. A similar change in director orientation under
shear has been reported in other simulation studies of the
lamellar phase34.

The radius of gyration for the hexagonal phase as a
function of the shear rate is shown in Fig. 18. Similarly
to the lamellar case, there is little change in the radius
of gyration except at very high shear rates. Unlike the
lamellar phase, the structure of the hexagonal phase is
allowed more freedom to adjust its periodicity (inter-rod
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a) b)
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FIG. 19: If shear flow is induced in the x direction by
shearing using the x− z plane, rods in the hexagonal

phase tend to align along the x-axis. The perpendicular
plane (y− z plane), experimentally, takes one of the two

orientations that are given the name parallel (a) or
perpendicular (b).

spacing r), since it can rotate in the y-z plane. It is
found that at almost all values of increasing shear rate,
there is no change in the value of its average inter-rod
spacing r, until reaching a shear rate of γ̇ = 6 × 10−2.
At this point r increases from r = 7.52 to r = 7.85. It
was discussed in our previous work1 that we observe a
preference for hexagonal phases to orientate their unit
cell in the y-z plane (as well rod alignment parallel to
the x-axis), when subject to shear. In experiments, this
is typically one of two orientations, as demonstrated in
Fig. 19. In our simulation work, we observe a small pref-
erence for parallel orientations to form. However, the
unit cell of the hexagonal phase is also restricted by the
need to satisfy periodic boundary conditions, so perfect
hexagonal lattices cannot form (that is, the unit cell is
described by two vectors of different lengths) and the
lattice must stretch in some way. Therefore, there is
competition between the preference to forming a parallel
orientation in the y-z plane, and forming a lattice which
is as close to a perfect hexagonal lattice as possible. We
believe the change in r we see at higher shear rates is due
to this competition. The orientation of the phases when
r = 7.52 is close to being in the parallel orientation, but
not perfectly (there is a small angle between the z-axis
and unit vector), while the r = 7.85 is a perfect parallel
orientation (unit vector parallel to z). This indicates that
the preference for forming parallel orientations strength-
ens at high shear rates, compared with the trade-off of a
non-desirable inter-rod spacing.

V. CONCLUSION

In this work, we calculate the viscosity of micellar solu-
tions using two different methods. Using an equilibrium
approach we show that the viscosity of micellar solutions
increases as a function of concentration, as is expected
from experiment. We also show that the Schmidt num-
ber has no influence on the molecular radius of gyration

when no shear is applied. Our second approach to cal-
culating viscosity is a non-equilibrium one, and we apply
shear using Lees-Edwards boundary conditions. Moder-
ate shear rates mildly encourage the aggregation number
to increase, by encouraging free surfactant molecules to
join micelles. A typical problem encountered in DPD
and other simulation methods is the under-prediction of
the aggregation number1,36. Therefore, it is hypothe-
sized that the equilibration of micellar systems can be
encouraged by applying a small amount of shear dur-
ing the micelle formation period, in order to increase the
mean aggregation number towards values found experi-
mentally.

We observe that at high shear rates, spherical mi-
celles can stretch into worm-like micelles, stretching in
the direction of shear flow. As a result of micellar break-
down, we observe a shear-thinning effect for micellar so-
lutions. This is particularly important considering the
large shear rates typically used in high-shear mixers, po-
tentially leading to structural and viscosity changes dur-
ing the manufacture of surfactant-containing products.
We also show that the Schmidt number has a signifi-
cant effect on the phase structure of micellar solutions
under shear, including the radius of gyration. This is
in contrast to what we find under equilibrium condi-
tions. This is an important consideration for research
comparing DPD simulations to real micellar solutions,
given that standard DPD parameter choices result in un-
realistic Schmidt numbers.

The lamellar and hexagonal phases are found to orien-
tate relative to the direction of applied shear, in a way
which is consistent with experiment. We find no evi-
dence of a transition to a perpendicular phase at high
shear rates for lamellar phases, despite the parallel phase
having a higher viscosity. This is of interest since the
transition to perpendicular phases is often explained by
its lower viscosity alone.

For the lamellar layers, we apply shear by setting the
box size based upon an integer multiple of the equilib-
rium d-spacing value. This allows us to ensure an in-
teger number of lamellar layers between the two shear-
ing planes. However, we assume that there is no change
in the d-spacing value with varying shear rate. Experi-
mentally, lamellar structures have been observed to ex-
hibit changes in their d-spacing as a result of high shear
rates64,65. However, it is rarely reported that there is a
transition to a nematic phase where a breakdown of layers
occurs. It is more often reported the parallel orientation
persists at high shear rates33, or that there is a tran-
sition to perpendicular orientations31,32,35 or ‘onions’12

at high shear rates. Therefore it is possible that the
lamellar layers should not disintegrate at high shear rate,
as they do in the simulations (however no experimen-
tal data could be found in existing literature for SLES
d-spacing under shear specifically). In the simulations,
the disintegration is suspected to be due to the orien-
tation of the molecules within the layers. The orienta-
tional change of the molecules would be expected to de-
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crease the d-spacing by decreasing the thickness of the
surfactant layer. However, due to the box size being cho-
sen based on the equilibrium d-spacing, the spacing and
thickness of the lamellar layers are unable to vary as a
function of shear rate. This may mean that the thick-
ness of the layers is forced to maintain an undesirable
d-spacing value under the application of shear. It would
be of interest in further work to investigate the effect of
varying box size and lamellar spacing when subjecting
lamellar phases to shear.
Finally, we show that the inter-rod spacing of the

hexagonal phase can be altered depending on the shear
rate applied. Hexagonal phases are typically difficult to
form under equilibrium conditions in DPD simulations,
so an approach to encouraging their formation is via the
application of a small amount of shear1,66. Therefore,
one must take care during this process that the shear
rate chosen does not impact the resulting inter-rod spac-
ing if the aim is to study the phase under equilibrium
conditions.
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Appendix A: Converting DPD time scale to real units

Most work using DPD is usually presented in reduced
DPD units, in which the unit of length is the particle size
rC = 1, the unit of mass is the particle mass m = 1, and
the unit of energy is defined by setting kBT = 1. One
method of converting the units used in DPD to real units,
is by matching the density of water in the simulation to
a known experimental value, and therefore a value for rC
can be obtained in real units.
The parameterisation used in this work, presented by

Anderson et al. (2018)36, groups two molecules together
to form the water bead in the simulation. Therefore, the
mass of one DPD bead of water m is the mass of two

water molecules; in real units, this is m = 5.98 × 10−26

kg. The number density ρ of beads in the simulation
box is defined by ρr3C = 3, which is a common choice
for ρ across DPD literature due to the work of Groot
and Warren24. The number density can be calculated
as ρ = ρm/m, where ρm is the mass density. Therefore
combining relationships ρ = ρm/m and ρr3C = 3 produces
the following relation for rC:

rC =

(

3m

ρm

)1/3

. (A1)

Using that the density of water at room temperature is
≈ 1000 kg/m3, this finds a value for rC in real units to
be rC ≈ 5.65× 10−10 m.
The temperature in the simulation is calculated using

the velocity v using

1

2
m⟨v2⟩ =

3

2
kBT. (A2)

By saying that the distance in real units dReal =
dDPDrC; time in real units tReal = tDPDτC; and vDPD =
dDPD/tDPD, we can show that

m

2

〈(

dDPDrC
tDPDτC

)2〉

=
3

2
kBT (A3)

(

rC
τC

)2

m

〈(

dDPD

tDPD

)2〉

= 3kBT (A4)

(

rC
τC

)2

=
kBT

m
. (A5)

Using kBT = 4.11 × 10−21 J at room temperature, and
the previously calculated values of rC = 5.65 × 10−10 m
and m = 5.98× 10−26 kg, finds a value for the time scale
of τC = 2.16× 10−12 s.

Appendix B: Relationship between Γ and Schmidt number

We investigated how the Stoyanov-Groot thermostat
behaves when applied to a simple simulation case. This
allowed us to choose appropriate Γ values for our sim-
ulations. A variety of simulations were performed on
simulation boxes containing only water beads with box
size L = 20. We calculate the viscosity using Eq. 14 and
use a shear rate of γ̇ = 0.006. The diffusion coefficient D
is calculated using the mean squared displacement

D =
⟨(r(t)− r0)

2⟩

2td
, (B1)

where r0 is the initial position at time t = 0, d is the
number of dimensions of the simulation box (in this case
d = 3), and the angled brackets indicate an average over
all beads. We vary the collision frequency Γ and time
step ∆t. The Schmidt number can be calculated from
the viscosity and diffusion coefficient.
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Fig. 20 shows the relationship between Γ and the
Schmidt number, confirming a Sc ∝ Γ2 relationship. This
relationship breaks down for high values of Γ∆t. There-
fore, in order to increase the Schmidt number by increas-
ing the collision parameter, may require a decrease in the
time step.

FIG. 20: Relationship between collision parameter Γ
and resulting Schmidt number of bulk water. Two time
steps ∆t = 0.01 and ∆t = 0.001 are tested. A fit of the
form Sc = AΓ2 +B, where A and B are constants, is
applied to the points from the ∆t = 0.001 for Γ ≤ 250.

Appendix C: Collision parameter Γ and the auto-correlation

function

For simulation boxes consisting of pure water, the vis-
cosity is calculated using a variety of different Γ choices,
and a selection of autocorrelation functions are illus-
trated in Fig. 21. It is shown that as the value of Γ
increases (i.e. the friction increases), the autocorrelation
function decays more rapidly. This poses a problem for
using this method (based upon integration over time) at
high Γ values.
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instein, and B. Pansu, “A PGSE-NMR study of molecular self-
diffusion in lamellar phases doped with polyoxometalates,” The
Journal of Physical Chemistry B 114, 220–227 (2010).

52G. Chidichimo, D. De Fazio, G. Ranieri, and M. Terenzi, “Self-
diffusion of water in a lamellar lyotropic liquid crystal: A study
by pulsed field gradient NMR,” Chemical Physics Letters 117,
514–517 (1985).

53B. Hammouda, “Temperature effect on the nanostructure of SDS
micelles in water,” Journal of Research of the National Institute
of Standards and Technology 118, 151–167 (2013).

54M. Ludwig, R. Geisler, S. Prévost, and R. von Klitzing, “Shape
and structure formation of mixed nonionic-anionic surfactant mi-
celles,” Molecules (Basel, Switzerland) 26, 4136– (2021).

55S. Khodaparast, W. N. Sharratt, G. Tyagi, R. M. Dalgliesh, E. S.
Robles, and J. T. Cabral, “Pure and mixed aqueous micellar
solutions of sodium dodecyl sulfate (SDS) and dimethyldodecyl
amine oxide (DDAO): Role of temperature and composition,”
Journal of Colloid and Interface Science 582, 1116–1127 (2021).

56X. Guo, X. Chen, W. Zhou, and J. Wei, “Effect of polymer drag
reducer on rheological properties of rocket kerosene solutions,”
Materials 15 (2022), 10.3390/ma15093343.

57S. Wang, “Shear induced deformation of polymers: Calculation
of radii of gyration,” The Journal of Chemical Physics 92, 7618–
7624 (1990).

58P. Lindner and R. Oberthür, “Shear induced deformation of
polystyrene in dilute solution from sans,” Physica B: Condensed
Matter 156-157, 410–413 (1989).

59R. L. Hendrikse, A. E. Bayly, P. K. Jimack, and X. Lai, “Using
raman spectroscopy and molecular dynamics to study conforma-



17

tion changes of sodium lauryl ether sulfate molecules (in press),”
The Journal of Physical Chemistry B (2023).

60L.-Y. You, L.-J. Chen, H.-J. Qian, and Z.-Y. Lu, “Microphase
transitions of perforated lamellae of cyclic diblock copolymers
under steady shear,” Macromolecules 40, 5222–5227 (2007).
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