20 research outputs found

    GBA-associated Parkinson’s disease in Hungary: clinical features and genetic insights

    Get PDF
    Introduction: Parkinson’s disease (PD) has a complex genetic background involving both rare and common genetic variants. Although a small percentage of cases show a clear Mendelian inheritance pattern, it is much more relevant to identify patients who present with a complex genetic profile of risk variants with different severity. The ß-glucocerebrosidase coding gene (GBA1) is recognized as the most frequent genetic risk factor for PD and Lewy body dementia, irrespective of reduction of the enzyme activity due to genetic variants. Methods: In a selected cohort of 190 Hungarian patients with clinical signs of PD and suspected genetic risk, we performed the genetic testing of the GBA1 gene. As other genetic hits can modify clinical features, we also screened for additional rare variants in other neurodegenerative genes and assessed the APOE-ε genotype of the patients. Results: In our cohort, we identified 29 GBA1 rare variant (RV) carriers. Out of the six different detected RVs, the highly debated E365K and T408M variants are composed of the majority of them (22 out of 32). Three patients carried two GBA1 variants, and an additional three patients carried rare variants in other neurodegenerative genes (SMPD1, SPG11, and SNCA). We did not observe differences in age at onset or other clinical features of the patients carrying two GBA1 variants or patients carrying heterozygous APOE-ε4 allele. Conclusion: We need further studies to better understand the drivers of clinical differences in these patients, as this could have important therapeutic implications. © 2023, The Author(s)

    A teljesexom-szekvenálás jelentősége a ritka neurológiai betegségek diagnosztikájában – saját tapasztalatok egy ataxiás eset kapcsán

    Get PDF
    Next generation sequencing (NGS) technologies reshape the diagnostics of rare neurological diseases. In the background of certain neurological symptoms, such as ataxia, many acquired and genetic causes may be present. Variations in a given gene can present with variable phenotypes, too. Because of this phenomenon, the conventional one gene sequencing approach often fails to identify the genetic background of a disease. Next generation sequencing panels allow to sequence 50-100 genes simultaneously, and if the disease stratification is not possible based on the clinical symptoms, whole exome sequencing can help in the diagnostic of genetic disorders with atypical presentation. This case study is about the exome sequencing of a patient with cerebellar ataxia. Genetic investigations identified rare variants in the SPG11 gene in association with the clinical phenotype, which gene was originally described in the background of hereditary spastic paraparesis. Our article highlights that in certain cases the variability of the leading presenting symptom makes it hard to select the correct gene panel. In our case the variants in the gene, formerly associated to hereditary spastic paraparesis, resulted in cerebellar ataxia initially, so even an ataxia NGS gene panel would not detect those. Orv Hetil. 2018; 159(28): 1163-1169

    The rs13388259 Intergenic Polymorphism in the Genomic Context of the BCYRN1 Gene Is Associated with Parkinson’s Disease in the Hungarian Population

    Get PDF
    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, and muscle rigidity. To date, approximately 50 genes have been implicated in PD pathogenesis, including both Mendelian genes with rare mutations and low-penetrance genes with common polymorphisms. Previous studies of low-penetrance genes focused on protein-coding genes, and less attention was given to long noncoding RNAs (lncRNAs). In this study, we aimed to investigate the susceptibility roles of lncRNA gene polymorphisms in the development of PD. Therefore, polymorphisms (n = 15) of the PINK1-AS, UCHL1-AS, BCYRN1, SOX2-OT, ANRIL and HAR1A lncRNAs genes were genotyped in Hungarian PD patients (n = 160) and age- and sex-matched controls (n = 167). The rare allele of the rs13388259 intergenic polymorphism, located downstream of the BCYRN1 gene, was significantly more frequent among PD patients than control individuals (OR = 2.31; p = 0.0015). In silico prediction suggested that this polymorphism is located in a noncoding region close to the binding site of the transcription factor HNF4A, which is a central regulatory hub gene that has been shown to be upregulated in the peripheral blood of PD patients. The rs13388259 polymorphism may interfere with the binding affinity of transcription factor HNF4A, potentially resulting in abnormal expression of target genes, such as BCYRN1

    Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - An analysis of 58 probands.

    No full text
    BACKGROUND: Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases with progressive lower limb spasticity and weakness. The aim of this study is to determine the frequency of different SPG mutations in Hungarian patients, and to provide further genotype-phenotype correlations for the known HSP causing genes. METHODS: We carried out genetic testing for 58 probands with clinical characteristics of HSP. For historical reasons, three different approaches were followed in different patients: 1) Sanger sequencing of ATL1 and SPAST genes, 2) whole exome, and 3) targeted panel sequencing by next generation sequencing. RESULTS: Genetic diagnosis was established for 20 probands (34.5%). We detected nine previously unreported mutations with high confidence for pathogenicity. The most frequently affected gene was SPAST with pathogenic or likely pathogenic mutations in 10 probands. The most frequently detected variant in our cohort was the SPG7 p.Leu78*, observed in four probands. Altogether five probands were diagnosed with SPG7. Additional mutations were detected in SPG11, ATL1, NIPA1, and ABCD1. CONCLUSION: This is the first comprehensive genetic epidemiological study of patients with HSP in Hungary. Next generation sequencing improved the yield of genetic diagnostics in this disease group even when the phenotype was atypical. However, considering the frequency of the HSP-causing gene defects, SPG4, the most common form of the disease, should be tested first to be cost effective in this economic region

    Correction: Solving unsolved rare neurological diseases—a Solve-RD viewpoint (European Journal of Human Genetics, (2021), 29, 9, (1332-1336), 10.1038/s41431-021-00901-1)

    No full text
    In the original publication of the article, consortium author lists were missing in the article. The details are given below
    corecore