245 research outputs found

    The Importance of Retrieval Failures to Long-term Retention: A Metacognitive Explanation of the Spacing Effect

    Get PDF
    Encoding strategies vary in their duration of effectiveness, and individuals can best identify and modify strategies that yield effects of short duration on the basis of retrieval failures. Multiple study sessions with long inter-session intervals are better than massed training at providing discriminative feedback that identifies encoding strategies of short duration. We report two investigations in which long intervals between study sessions yield substantial benefits to long-term retention, at a cost of only moderately longer individual study sessions. When individuals monitor and control encoding over an extended period, targets yielding the largest number of retrieval failures contribute substantially to the spacing advantage. These findings are relevant to theory and to educators whose primary interest in memory pertains to long-term maintenance of knowledge

    Designing Engaging Learning Experiences in Programming

    Get PDF
    In this paper we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies to explore how programming tasks could be framed to motivate learners. Our empirical findings from these four field studies are summarized here, with a particular focus upon one – Whack a Mole – which compared the use of a physical interface with the use of a screen-based equivalent interface to obtain insights into what made for an engaging learning experience. Emotions reported by two sets of participant undergraduate students were analyzed, identifying the links between the emotions experienced during programming and their origin. Evidence was collected of the very positive emotions experienced by learners programming with a physical interface (Arduino) in comparison with a similar program developed using a screen-based equivalent interface. A follow-up study provided further evidence of the motivation of personalized design of programming tangible physical artefacts. Collating all the evidence led to the design of a set of ‘Learning Dimensions’ which may provide educators with insights to support key design decisions for the creation of engaging programming learning experiences

    The novel object recognition memory: neurobiology, test procedure, and its modifications

    Get PDF
    Animal models of memory have been considered as the subject of many scientific publications at least since the beginning of the twentieth century. In humans, memory is often accessed through spoken or written language, while in animals, cognitive functions must be accessed through different kind of behaviors in many specific, experimental models of memory and learning. Among them, the novel object recognition test can be evaluated by the differences in the exploration time of novel and familiar objects. Its application is not limited to a field of research and enables that various issues can be studied, such as the memory and learning, the preference for novelty, the influence of different brain regions in the process of recognition, and even the study of different drugs and their effects. This paper describes the novel object recognition paradigms in animals, as a valuable measure of cognition. The purpose of this work was to review the neurobiology and methodological modifications of the test commonly used in behavioral pharmacology

    Learning and Long-Term Retention of Large-Scale Artificial Languages

    Get PDF
    Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that this ability may be useful for bootstrapping language-specific cues to segmentation. It is unknown, however, whether performance shown in small-scale laboratory demonstrations of “statistical learning” can scale up to allow learning of the lexicons of natural languages, which are orders of magnitude larger. Artificial language experiments with adults can be used to test whether the mechanisms of statistical learning are in principle scalable to larger lexicons. We report data from a large-scale learning experiment that demonstrates that adults can learn words from unsegmented input in much larger languages than previously documented and that they retain the words they learn for years. These results suggest that statistical word segmentation could be scalable to the challenges of lexical acquisition in natural language learning.National Science Foundation (U.S.) (NSF DDRIG #0746251

    Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge

    Get PDF
    The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms

    Bodily illusions in young children: Developmental change in visual and proprioceptive contributions to perceived hand position.

    Get PDF
    We examined the visual capture of perceived hand position in forty-five 5- to 7-year-olds and in fifteen young adults, using a mirror illusion task. In this task, participants see their left hand on both the left and right (by virtue of a mirror placed at the midline facing the left arm, and obscuring the right). The accuracy of participants’ reaching was measured when proprioceptive and visual cues to the location of the right arm were put into conflict (by placing the arms at different distances from the mirror), and also when only proprioceptive information was available (i.e., when the mirror was covered). Children in all age-groups (and adults) made reaching errors in the mirror condition in accordance with the visually-specified illusory starting position of their hand indicating a visual capture of perceived hand position. Data analysis indicated that visual capture increased substantially up until 6 years of age. These findings are interpreted with respect to the development of the visual guidance of action in early childhood

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF
    corecore