9,282 research outputs found

    Flat-plate solar array project. Volume 5: Process development

    Get PDF
    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly

    Ability of new durum wheat pure lines to meet yield stability and quality requirements in low input and organic systems

    Get PDF
    Low-input production schemes adopted in organic or conventional farms require crop varieties that combine good product quality and high yield stability under non optimal environmental conditions (Gooding et al., 1999). These traits are not yet found among the durum wheat genotypes available in France. Consequently the cultivation of this crop is hardly successful in stockless organic farms in southern France, which are characterised by very low nitrogen resources. Some hopes emerged with the identification of new durum wheat pure lines with a high grain protein content in breeding experiments conducted near Montpellier in 2001 and 2002. The aim of the present work was to confirm and elucidate the origin of the enhanced protein performance of these new lines through a field experiment with nitrogen resources ranging from very low to sub-optimal levels

    Three-dimensional quasi-Tonks gas in a harmonic trap

    Full text link
    We analyze the macroscopic dynamics of a Bose gas in a harmonic trap with a superimposed two-dimensional optical lattice, assuming a weak coupling between different lattice sites. We consider the situation in which the local chemical potential at each lattice site can be considered as that provided by the Lieb-Liniger solution. Due to the weak coupling between sites and the form of the chemical potential, the three-dimensional ground-state density profile and the excitation spectrum acquire remarkable properties different from both 1D and 3D gases. We call this system a quasi-Tonks gas. We discuss the range of applicability of this regime, as well as realistic experimental situations where it can be observed.Comment: 4 pages, 3 figures, misprints correcte

    Expansion of a coherent array of Bose-Einstein condensates

    Full text link
    We investigate the properties of a coherent array containing about 200 Bose-Einstein condensates produced in a far detuned 1D optical lattice. The density profile of the gas, imaged after releasing the trap, provides information about the coherence of the ground-state wavefunction. The measured atomic distribution is characterized by interference peaks. The time evolution of the peaks, their relative population as well as the radial size of the expanding cloud are in good agreement with the predictions of theory. The 2D nature of the trapped condensates and the conditions required to observe the effects of coherence are also discussed.Comment: 4 pages, 3 figure

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    The thermal QCD transition with two flavours of twisted mass fermions

    Full text link
    We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a set of pion masses, 300 MeV \textless mπm_\pi \textless 500 MeV, and lattice spacings aa \textless 0.09 fm. We determine the pseudo-critical temperatures and discuss their extrapolation to the chiral limit using scaling forms for different universality classes, as well as the scaling form for the magnetic equation of state. For all pion masses considered we find resonable consistency with O(4) scaling plus leading corrections. However, a true distinction between the O(4) scenario and a first order scenario in the chiral limit requires lighter pions than are currently in use in simulations of Wilson fermions.Comment: 11 pages, 11 figure

    Spontaneous emission of atoms via collisions of Bose-Einstein condensates

    Full text link
    The widely used Gross-Pitaevskii equation treats only coherent aspects of the evolution of a Bose-Einstein condensate. However, inevitably some atoms scatter out of the condensate. We have developed a method, based on the field theory formulation, describing the dynamics of incoherent processes which are due to elastic collisions. We can therefore treat processes of spontaneous emission of atoms into the empty modes, as opposed to stimulated processes, which require non-zero initial occupation. In this article we study two counter-propagating plane waves of atoms, calculating the full dynamics of mode occupation, as well as the statistics of scattered atoms. The more realistic case of Gaussian wavepackets is also analyzed.Comment: 5 pages, 2 figure

    Analytical response time estimation in parallel relational database systems

    Get PDF
    Techniques for performance estimation in parallel database systems are well established for parameters such as throughput, bottlenecks and resource utilisation. However, response time estimation is a complex activity which is difficult to predict and has attracted research for a number of years. Simulation is one option for predicting response time but this is a costly process. Analytical modelling is a less expensive option but requires approximations and assumptions about the queueing networks built up in real parallel database machines which are often questionable and few of the papers on analytical approaches are backed by results from validation against real machines. This paper describes a new analytical approach for response time estimation that is based on a detailed study of different approaches and assumptions. The approach has been validated against two commercial parallel DBMSs running on actual parallel machines and is shown to produce acceptable accuracy
    corecore