
1

Practical Response Time Estimation in

Parallel Relational Database Systems

N. Tomov, E. Dempster, M. H. Williams, A. Burger, H. Taylor, P. J. B. King and P.

Broughton

Abstract— An analytical approach to response time estimation in parallel relational database systems has been

developed. It is based on a representation of database activity, in which queries are mapped to low-level

patterns of resource consumption, capturing the execution logic of relational operators and mechanisms such as

pipelined and partitioned execution. Resource usage profiles are mapped to open multi-class queueing

networks. Queue waiting times are estimated using a heuristic rule, which labels resources as M/M/1 or M/G/1

queues. From these and the resource usage profile the average response time of a query is obtained.

Synchronisation mechanisms such as pipelines between operators and partitioned parallelism are taken into

account. The results of the analytical approach are compared against measurements of Informix XPS

performance on a parallel system.

Index Terms— performance estimation, analytical model, queueing networks, pipeline parallelism, validation.

1 Introduction

Parallel database systems are one of the more successful commercial applications of parallel

computer technology. In recent years several prototype systems have been developed within

research projects, e.g. Gamma [10], Bubba [5], DBS3 [2], EDS [36], Volcano [17], XPRS

[18]. Many of the ideas from this work have been taken up by industry, and today, a number

of major hardware and software vendors provide parallel database solutions (e.g. Informix,

Oracle, IBM DB2, Teradata, NonStop SQL, Sybase, Microsoft SQL Server).

The ability to predict the performance of computer systems has always been important.

This is especially true in the case of parallel database systems. It can be used before acquiring

a parallel system to determine a suitable configuration, or once one has a parallel database

system to tune its performance or decide how best to upgrade, e.g., there are many alternative

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Heriot Watt Pure

https://core.ac.uk/display/29064213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ways of breaking up and distributing the data across the nodes and discs of a system, or

scheduling an operator tree for execution. Performance prediction tools that automate the

process of comparing and evaluating design decisions would benefit those involved with

application design, system sizing and database administration. Due to the complexity of

parallel databases, performance estimation of such systems is difficult. Correspondingly, the

design of performance prediction tools and methodologies for this is a challenging task.

In estimating the performance of a parallel database system for a given set of queries,

typical parameters of interest are the system bottlenecks, utilisation of different resources,

maximum transaction throughput, and response time. Of these, the last is the most difficult to

predict. This paper reports on a technique developed specifically for estimating response

time in parallel database systems and its effectiveness compared with actual system

measurements. The response time model is implemented as part of the core of a performance

estimation tool called STEADY [38,9,37] that has been developed to predict the performance

of three different parallel database systems.

The rest of this paper is organised as follows. Related work is discussed in Section 2.

Section 3 is devoted to the technique used for response time estimation. The results from a

validation exercise of the technique are reported in Section 4. Some conclusions and possible

future work are given in Section 5.

2 Related Work

In the past research on measurement or estimation of response time of queries has ranged

from studies of specific aspects of parallel database systems to commercial products for

capacity planning or performance prediction. In the former case a number of researchers

studying different aspects of parallel database operations such as skew, scheduling, hash-join

algorithms, cache coherency, etc., have proposed and used models of query execution which

produce an estimate of response time. In the latter case more general systems have been

3

developed to predict performance for complete parallel database systems.

For example, in [33] data skew and its effect on response time of queries using joins is

studied. A taxonomy of types of skew and a modelling methodology are proposed. A

method for calculating response time is proposed and is applied to two existing hash join

algorithms under skew. The response time analysis decomposes each algorithm into phases,

each of which has a number of steps and can be partitioned across a number of processors.

The time of each step is calculated based on the number of tuples involved, and is added to

the total time of the resource responsible for the step (disc, cpu or communications). A

bottleneck resource is established and its response time is used as the response time of the

algorithm phase. The sum of the response times of all phases gives the response time of the

algorithm.

In [14] scheduling in shared-nothing systems is studied and an analytical model of

parallel execution and resource sharing is developed to estimate the response time of a given

schedule (and, hence, the corresponding query). The model takes into account the overlapped

use of multiple resources and captures both partitioned and pipeline parallelism. The

response time of a parallel schedule is determined by either the slowest executing operator, or

the load at the most heavily congested resource in the system, whichever is greater.

In [19] a method for efficient execution of multiple pipelined hash joins is proposed.

The original execution tree is transformed into an allocation tree, each node of which is a

multi-stage pipeline of hash joins. Several different hash-join strategies are studied. A

combination of simulation and analytical techniques is used to derive the execution times of

the different schemes. A (relatively simple) analytical formula is used to compute the

execution time within each node. The formula sums the execution time for each phase of the

joining of the relations i.e. reading, building hash tables, and probing. The simulation is used

to traverse the allocation tree and carry out the join operations in parallel.

4

Work on cache coherency policies uses models of response time to quantify the

performance of alternative policies. For example, in [8] and [7] a comprehensive model of

execution time is used, which attempts to account for the buffer hit probability, the

concurrency control protocol, and the processing time and queueing delay at hardware

resources. These three sub-models are analysed independently and their interactions are

captured through a set of non-linear equations. An iterative process solves the system of

equations to produce a solution to the overall model. Issues of pipelined execution are not

considered.

There is some work specifically concerned with models of query execution which take

account of the various factors affecting response time (e.g. query execution in a pipeline,

contention for resources, effect of cache, etc.), and are intended for use in predicting overall

response times of actual parallel database systems. An early attempt in the context of single-

processor database systems is the work by Sevcik [26], which proposes an overall framework

for predicting resource consumption, throughput and response time, and how these are

affected by various physical and logical database design decisions.

A more recent example is the work by Salza et al [23,24], in which a modelling

methodology for applications running on shared-nothing parallel database systems is

developed. A workload model is used to characterise the database relations and set of

transactions to be processed. From this, resource utilisation can be estimated. A buffer

model is developed to capture the effect of caching. Through bottleneck analysis, maximum

system throughput can be predicted. Response time is estimated as follows. First, by using

queueing techniques, an estimate is made of how much the execution of each operator is

slowed down by the concurrent running of other operators on the same node. A simplifying

assumption of exponential service time distributions is made and standard queueing network

techniques are applied. Second, the concurrent execution of different operators from the

5

same execution schedule is modelled, taking into account pipelined and partitioned

execution. The approach is applied to a particular system (DB2 Parallel Edition on an IBM

SP2 architecture), but no comparison results are reported.

M. Spiliopoulou et al [30,28,29] study the problem of estimating execution time for

queries composed of multiple pipelined operators scheduled to run in a parallel database

system. The intention is to incorporate the execution time prediction mechanism into a

generic optimiser for parallel query processing. The developed cost model uses a

comprehensive set of analytical formulae to compute the cost of a large variety of query

operators, both in isolation and running in a pipeline. The model does not take into account

contention for physical resources.

A number of commercial products also exist, which have a response time prediction

capability. These are usually capacity planning or performance prediction tools, developed

for existing parallel database systems. Tools vary in complexity from a simple set of cost

formulae to a detailed simulation of the DBMS. Both analytical and simulation models are

used. Examples include the Athene Performance Management System from Metron

Technology [15,16,12] (an analytical capacity planning tool, developed for Oracle), a

simulation-based performance prediction tool from Platinum Technology [22], an analytical

tool from BEZ Systems [27,3], and a simulation tool for Oracle from SES Inc [25].

Another example is the DB2 Estimator [11] project at IBM, which has produced an

analytical performance estimation tool, designed specifically for DB2 for OS/390 V5 and V6.

It runs on a PC and calculates estimated costs using formulae obtained from an analysis of

real DB2 code and performance measurements. For simple OLTP workloads, Estimator aims

to predict the cost of 90% of the transactions within a 10% error. For decision support

workloads these figures are 80% and 20%, respectively.

SMART (Simulation and Model of Application based Relational Technology) [6,1] is a

6

tool developed for predicting the performance of relational database applications using

simulation. This tool is currently being superceded by its re-engineered successor, SWAP.

SMART/SWAP is a sophisticated and versatile tool which is able to model complex real

applications running on a variety of different platforms. Currently it models the performance

of Oracle V7 and is in the process of being extended to model Oracle V8.

Most of this work suffers from two major drawbacks. Firstly, in many cases the service

processes are assumed to be exponential whereas in practice they are not. This produces

significant differences in terms of the results of the queueing network model. Secondly, most

of the work is not supported by actual system measurements. The model described in this

paper is an analytical one, intended for use in rapid estimation of response time, and it takes

account of both these issues.

3 Estimating Response Time

The method proposed for estimation of query response time consists of three stages. The first

stage (preparation) transforms a query into a suitable form. Database queries given as

execution plans are reduced to a collection of low-level resource usage specifications,

detailing patterns of resource consumption during query execution. Section 3.1 provides a

brief overview of the reduction process and the resource usage profile representation.

The second stage (mean resource response time estimation) is concerned with the

prediction of response time of individual hardware resources (CPUs, discs, etc), given their

pattern of use during query execution (specified by the resource usage profile). For this

stage, the profile is taken as the specification of a type of open, multi-class queueing network.

Synchronisation between query execution phases, such as pipelined execution or partitioned

parallelism, is not taken into account during this stage. Queueing network techniques are

used to solve the network and obtain estimates for resource response times. Section 3.2

summarises the method used, which is based on a heuristic rule.

7

The third stage (mean query response time estimation), calculates the mean response

time of a query, given its resource usage profile and estimated response times of individual

resources. This is achieved through a process of traversing the resource usage profile and

accumulating usage time according to the structure of the profile. Intra-operator parallelism

such as pipelined or partitioned execution is taken into account during traversal and

determines the way usage time is accumulated. Full details of this are given in Section 3.3.

3.1 Preparation

The starting point for the analysis is an operator tree [14,13], created from a query execution

tree by decomposing each of its nodes into one or more constituent operator nodes, e.g. SCAN,

AGGREGATE, BUILD, PROBE. Operator trees are generated by the compiler of the DBMS and

given as input to the model. An operator tree together with a mapping of system processors

to operators of the tree constitutes a parallel execution schedule [14].

An example parallel execution schedule is presented in Fig. 1. This shows an execution

schedule for a query joining relations A, B and C and computing an aggregate function (e.g.

max) over the resulting set of tuples. The execution schedule is typical of Informix XPS, and

describes the following sequence of actions. Relation A is scanned and its tuples are used to

build a hash table in preparation for joining with B. B is scanned and tuples from it are used

to probe the hash table; the resulting join tuples then build a second hash table. C’s tuples are

scanned and used to probe the second hash table. Join tuples resulting from the last probe

phase are aggregated. Redistribution of tuples takes place between a scanning and

corresponding building phase in accordance with the requirements of the hash-join algorithm.

Arrows between nodes of the schedule represent flow of data as well as timing

dependencies. Solid arrows denote blocking. For example, the probing of a hash table with

tuples from C can begin only after the hash table has been built – hence the solid arrow

between nodes “BUILD A⊗B” and “PROBE C”. Dotted arrows denote pipelined execution.

8

For example, the scanning of tuples from A and their insertion into a hash table can be done

in a pipeline (nodes “ SCAN A” and “ BUILD A”). Similarly a 3-stage pipeline can be

established for the scanning of tuples from B, probing a hash table with them, and using

resulting tuples to build a new hash table (“ SCAN B” , “ PROBE B” and “ BUILD A⊗B”).

Partitioned parallelism is achieved by spreading an operator across multiple machine

processors, as specified in the figure. For example, the scanning of A is carried out on PEs 0-

2, as dictated by data placement constraints. Similarly, after redistributing the tuples selected

from A, the building of the hash table takes place across the same three PEs.

AGGREGATE A⊗B⊗C
PE6, PE7

SCAN A
PE0,PE1,PE2

BUILD A
PE0,PE1,PE2

SCAN B
PE3,PE4

PROBE B
PE0,PE1,PE2

PROBE C
PE0,PE1,PE2

SCAN C
PE5

BUILD A⊗B
PE0,PE1,PE2

Fig. 1 Parallel execution schedule

A process akin to “ macro expansion” is then applied to each of the operators at the

nodes of the parallel execution schedule. The process transforms each node into a detailed

sequence of resource consumption items, termed here a resource usage block. The set of

resource usage blocks and their interdependencies (taken from the execution schedule) form

the resource usage profile of the query.

As an example, consider Fig. 2, which shows the resource usage block corresponding to

the “ SCAN A” node of the execution schedule. This represents the process of consecutive

fetching of database pages from disc, selecting relevant tuples from the page, and sending

them on to another block. This activity is given as a detailed sequence of resource usage.

Two types of notation are used in the body of the block (lines 4-28). The first is

9

concerned with the specific uses of individual resources for particular amounts of time. The

usage of a particular hardware resource (e.g. processing unit - pu, system support unit - ssu,

interconnect - net, disc) for a specified amount of time is represented in italics. Simple

examples are lines 5 and 6, where resource ssu is used for time t1 and resource pu for time t2.

Line 12 gives an example of a resource (disc0) used for different amounts of time depending

on the processing element (PEs 0-2) using the resource. The service time requirements for

simple resource usage (ti) are extracted from the particular parallel database architecture

modelled. For example, t5, t6, and t7 in line 12 represent the average time spent by disc0 of

PE0, PE1, and PE2 in the process of fetching a data page, while t3 (line 11) is the amount of

service time consumed by the pu resource during the page fetch.

1 BLOCK: SCAN A
2 HOME: PE0, PE1, PE2
3 RESOURCE TIME
4 group {
5 ssu t1;
6 pu t2

7 } PE0:0.0;PE1:1.0;PE2:1.0;
8 loop {PE0:1710;PE1:1501;PE2:1802} {
9 mean_shared_lock_waiting_time;
10 group {
11 pu t3;
12 disc0 {PE0(t5), PE1(t6), PE2(t7)}:
13 } PE0:0.00;PE1:0.76;PE2:0.98;
14 loop {PE0:20;PE1:20;PE2:20} {
15 pu t8;

16 group {
17 option {
18 pu t9: 0.6
19 pu t10: 0.4;
20 };
21 group {
22 pu t11;
23 ssu t12;
24 net t13

25 }PE0:0.67;PE1:0.67;PE2:0.67
26 }0.75
27 }
28 }
29 END TIME

Fig. 2 Resource usage block

The second type of notation represents templates used to structure simple resource

usage items. Templates are represented in bold and are of three types: group, option, and

loop. The group template is used to designate a sequence of resource usage items, which has

an associated probability of occurring. For example, the group template in lines 21-25

encloses three simple resource items, which represent the resource consumption required for

the sending of a selected tuple for processing by the “ BUILD A” operator. The probability

associated with this group template is intended to rule out the physical sending across the

interconnect of tuples destined for the processor where they are produced.

The option template is used to denote choice. It can have a number of branches, each

10

of which has an associated probability and contains a sequence of resource usage items. The

grouped items occur together with the given probability. An example of option template use

is given in lines 17-20, where the pu resource is used for either time t9 (with probability 0.6)

or time t10 (with probability 0.4).

The loop template is used to designate repeated use of resources. The consecutive

fetching of data pages is conveniently expressed with the loop construct since similar actions

are carried out for each fetched page. The loop on line 8 represents the processing of 1710,

1501 and 1802 pages from PE0, PE1, and PE2, respectively. For each page read, a second loop

(line 14) is used to represent the processing of individual tuples within the newly read page.

3.2 Mean Resource Response Time Estimation

The aim of the second stage of the method is to estimate the response time of individual

hardware resources, given their pattern of use as specified by the resource usage profile. The

approach used here is to take the resource usage profile of a query as specifying a queueing

network [21,4], and “ solve” the network for resource response time. The network queueing

stations are the hardware resources of the machine and are treated as FCFS servers. The

transitions among stations are determined by the templates within the resource usage blocks.

49/50

1/50

11

1

 32 resA

100

 60 resB

50

 146 resC

1/50

99/100

Q1

Q2

query Q1
loop 50
 resA 32
 resB 60
 resC 146

query Q2
loop 100
 resB 50
 resA 100

Fig. 3 Queueing network for simple example

An example of a queueing network for two simple resource usage blocks representing

two hypothetical queries is given in Fig. 3. The pattern of resource consumption is

11

represented as an open queueing network with two customer classes Q1 (solid line) and Q2

(dashed line), as illustrated. Shown are the three resources, the probabilities of transitions

among them, and the service times for each customer class and resource.

Two difficulties present themselves when working with queueing networks in this

context. One concerns the service time requirements at the queueing stations. Typically,

exponentially distributed service times with a given mean are assumed. However, in practice

assuming non-exponential service times is more realistic. The queueing network is thus

composed of non-exponential servers, which renders it a non-product-form network.

The second difficulty is to do with the dependencies among resource usage blocks (e.g.

pipeline execution and blocking). This imposes a synchronisation mechanism on the

queueing network, which governs the timing of transitions between stations.

There have been numerous studies that address the non-exponential service time

problem and lead to analytical approximation techniques [4]. Similarly, many studies are

concerned with the synchronisation issues [4]: fork-join queues, blocking queues, etc. We

are not aware of any studies, which address both issues simultaneously.

The approach used here is to tackle the two problems separately. In this section the

first problem is addressed without regard for resource block inter-dependencies (i.e. the

transitions between queueing centres are assumed to be of the “ classical” type); the

synchronisation issue is dealt with in the next section where overall query response time is

estimated from the resource usage profile.

The non-product-form nature of the networks due to non-exponential service time

requirements means that no exact analytical solutions for the response time or queue length of

queueing centres can be found. However, numerous approximation techniques for non-

product-form networks have been proposed in the literature [4]. In [31] we conduct a

comprehensive study of approximation techniques for open multi-class networks. A range of

12

simple models was used and for each model the different approximation techniques were

used to predict the response times for varying inter-arrival rates. The results were compared

with those obtained from discrete event simulation. From the numerous examples considered

in the study, best results were produced when the queueing network was considered to consist

of a combination of M/M/1 and M/G/1 queueing centres.

This observation was incorporated into a simple heuristic rule, which accounted for all

the cases tried. The rule is used to assign the resources of the network with either an M/M/1

or M/G/1 label. In accordance with the assigned label, the queue length or waiting time of

each resource can be computed easily from the Khinchin-Pollaczek [21] formula. The

heuristic rule used is based on the idea of resource dominance, and is summarised below.

Definition The dominance of a resource is a weighted average of its utilisation and its

relative visit ratio, i.e.

∑
×+×=

j
j

i
ii Rvr

Rvr
RutilRdom

)(
)(

2
1)(

2
1)(

where vr(Ri) is the average number of times resource Ri is visited for each arrival from

outside. This corresponds to the visit ratio defined in [21] where the reference queue is q0

(the outside world).

Since both utilisation and relative visit ratio are numbers in the range 0 to 1, so also is

dominance. Although relative visit ratio does not depend on query arrival rate, utilisation

does. Thus, the utilisation of each resource must be taken for some particular query arrival

rate (e.g. when the bottleneck resource has utilisation of 80%). The heuristic rule is now as

follows:

(a) Find the dominance of each resource.

(b) If there is a single dominant resource, i.e. dom(Ri) > dom(Rj) for all j ≠ i, then

according to the squared coefficient of variation of service time for each resource,

label the resources as follows:

13

• label dominant resource Ri as max(M/M/1, M/G/1)

• label other resources Rj as min(M/M/1, M/G/1)

(c) If there is more than one dominant resource, i.e. dom(Ri1
) =…= dom(R in

) > dom(Rj)

for all j ≠ i1…in then label all resources as min(M/M/1, M/G/1).

(d) According to the label, use the Khinchin-Pollaczek formula to compute resource

waiting time.

For parts (b) and (c) of the rule, the M/G/1 formula collapses into the M/M/1 formula

when the squared coefficient of variation of the service time is 1.0; however, if the latter is

less than 1.0, max(M/M/1, M/G/1) = M/M/1 whereas if it is greater than 1.0, max(M/M/1,

M/G/1) = M/G/1.

3.3 Mean Transaction Response Time Estimation

Given the estimated queue waiting time of individual resources according to the above rule,

the response time of the query can be estimated. This process is essentially a traversal of the

resource block profile. During the traversal, response time is accumulated according to the

structure of the blocks and the dependencies among blocks. In particular, account is taken of

the templates within each block (group, option, loop, etc.), the partitioned parallelism, and

the blocking or pipeline dependency among blocks. This is detailed below. First the

response time estimation within a resource usage block not involved in a pipeline with others

is discussed. This is extended to the case of such a block executing in parallel across several

nodes (partitioned parallelism). Next, pipelined execution of blocks is considered. Finally,

an overall response time for the complete resource usage profile of the query is obtained.

3.3.1 Templates

Within a resource usage block not involved in a pipeline with other blocks and running on a

single processor, the response time of a sequence of one or more resource usage items is the

sum of their response times. Each of these items may be a simple usage or a template (group,

14

option or loop). The response time of a simple usage involving resource r is the sum of the

particular service time and the mean waiting time of the resource, as estimated by the rule.

Denote this response time as RT(r).

For a group template with probability p (group {usg1;…; usgn} p), the response time is

computed as))()(()(1 nusgRTusgRTpgroupRT ++×= K . In the case of an option template

(option {usg1:p1;…; usgn:pn}), the response time is given by

)()()(11 nn usgRTpusgRTpoptionRT ×++×= K .

The loop template denotes pipeline execution internal to the block. The response time

of a loop usage is computed from the pipeline initialisation time and production time. A

simple example of a pipeline is given in Fig. 4 to illustrate the idea. Three resources (resA,

resB and resC) are organised in a pipeline that performs 10 iterations. The resources take 3,

4 and 1 unit of time per iteration, respectively. These represent the actual service time added

to the mean waiting time for the resource as estimated by the rule; the service times are not

shown. This applies to all subsequent examples.

The execution pattern is presented on the right hand side. The first iteration completes

after 3 + 4 + 1 time units. Thereafter, an iteration completes every 4 time units as determined

by resB, the pipeline bottleneck. This time (4 time units) is termed the production time of the

pipeline and is the highest response time among the resources in the loop. The time from

start to end of an iteration (in this case 3 + 4 + 1 = 8 time units) is termed the pipeline

initialisation time. It is equal to the sum of the response times of all resources involved. The

response time of a pipeline loop of n iterations is approximated as:

)),),((()1(),()(
)(

LLLresbnrtnLrrtloopRT
Lresr

×−+∑=
∈

where:

• L is the set of resource usage items within the body of the loop;

• res(U) is the set of resources involved in the set of usage items U;

15

• rt(r, U) is the response time of resource r given its involvement in usage items from U;

• bn(R, U) is the bottleneck resource (the one with highest response time) among those in

set R given their involvement in usage items from U.

loop 10 {
resA 3;
resB 4;
resC 1

} 1st

2nd

3rd

4th

resA resB resC

etc.

iteration

iteration

odd

even

Fig. 4 Pipelined execution

Informally, the response time is the sum of the initialisation time and the product of (n–

1) and the production time. For the given example the formula evaluates to (3+4+1)+9×4=44

time units. This example is for a very simple loop. Typically, more complicated patterns of

resource usage exist within the body of the loop, involving group or option templates. In this

case, resource consumption is accumulated for each resource involved in the loop (by rt(r, U)

and bn(R, U)) according to the templates and probabilities involved. The production and

initialisation times are calculated based on these accumulated quantities.

In some cases, such as the resource block shown previously in Fig. 2, one loop template

occurs within another. The inner loop is the last template of the outer loop. A simpler

example is given in Fig. 5(a). The overall response time depends on the response times of

resources from the inner and outer loops and the number of iterations of the inner loop.

Suppose the inner loop, considered in isolation, has smaller overall response time than that of

the bottleneck resource from the outer loop. In this case, the bottleneck of the outer loop

determines the overall response time of the system. Otherwise, the inner loop, of which there

are 15 iterations altogether, determines the performance. This type of analysis is carried out

16

in the discussion of pipelined blocks in Section 3.3.3. The same reasoning can be applied

here. In order to do so, this case of loop usage is treated as being equivalent to two resource

blocks working in a pipeline, as shown in Fig. 5(b). With this representation, the analysis of

Section 3.3.3 can be reused.

(b)

(a)

loop 5 {
resA t1;
resB t2;
loop 3 {

resC t3;
resD t4

}
}

loop 5 {
resA t1;
resB t2

}

loop 15 {
resC t3;
resD t4

}

Fig. 5 Example of loop within a loop

3.3.2 Partitioned parallelism

The home field of a resource usage block specifies the processing elements used to execute

the block and thus is an indication of intra-operation parallelism. For example, in Fig. 2,

execution is spread over PE0, PE1 and PE2. The total response time of a block is obtained in

two steps. First, the response time of each processing element from the block’s home is

calculated by accumulating time for the sequence of resource usage items in the body of the

block. This is done following the procedure outlined above. Second, the processing element

with the largest accumulated response time is found. This value is the response time of the

block. Since all processing elements in its home are running in parallel, the block will

complete when the processing element with the longest response time completes.

3.3.3 Pipelined parallelism

A pipeline may span two or three blocks within a query tree, which is typical of the queries

used for validation in Section 4. Consider the case of two single-home blocks in a pipeline

with one sending tuples and the other receiving them. A simple example of two such blocks

is shown in Fig. 6. PE1 of block1 sends n tuples in a pipeline (in a similar way to the example

in Fig. 4). The sending of a tuple requires work from all three resources resA1, resB1 and

17

resC1. Let t2 be max(t1, t2, t3). The bottleneck resource of this pipeline is thus resB1; the

pipeline production time is t2 and the initialisation time is t1 + t2 + t3. Block2 on PE2 receives

the n tuples and performs further operations using resources resA2 and resB2. The

production time of this pipeline is t5. The full processing time needed to receive a tuple (the

initialisation time of this loop) is t4 + t5.

T1

BLOCK: block1
MODE: independent
HOME: pe1

loop n {
resA1 t1;
resB1 t2;
resC1 t3

}

BLOCK: block2
MODE: pipeline block1
HOME: pe2

loop n {
resA2 t4;
resB2 t5

}

resA1

T2

block1

resB1 resC1 resA2

block2

resB2

Fig. 6 Two blocks in a pipeline

Time T1 in Fig. 6 is the time at which the first iteration of the loop in block1 is

complete and the first tuple has been sent to and is about to be received by block2. Similarly,

T2 is the time when the last tuple has just been sent and the work needed for its processing in

block2 begins. Between times T1 and T2 the sending and receiving process execute together

in parallel. The response time of the system depends on the relative speeds of sender and

receiver. Let the bottlenecks of the two loops be ∗
1r and ∗

2r , i.e. ∗= 111)),((rLLresbn and

∗= 222)),((rLLresbn . Since the resources required by the two blocks are disjoint, if the

sending process can send its tuples in less time than the receiving one can process them, i.e.

),(),(2211 LrrtLrrt ∗∗ < , then the total time of the system is governed by the speed of the

receiver and may be approximated as ∑+×−+∑
∈

∗

∈)(
222

)(
1

21

),(),()1(),(
LresrLresr

LrrtLrrtnLrrt .

Here, L1 and L2 stand for the set of resource usage items in the loops of block1 and

18

block2, respectively. The first component in the formula accounts for the time prior to T1.

The second covers the period between T1 and T2, and the third from T2 to the end of

execution. For the example this would be (t1 + t2 + t3) + (n - 1) × t5 + (t4 + t5).

On the other hand, if the receiving process takes less time than the sending process, i.e.

),(),(2
*
21

*
1 LrrtLrrt > , then the total time of the system is governed by the sender:

∑+×−+∑
∈

∗

∈)(
211

)(
1

21

),(),()1(),(
LresrLresr

LrrtLrrtnLrrt

If the resources required by the two blocks are not disjoint, then the calculation of the

production time of each loop must take into account any usage of shared resources taking

place in the other loop. Suppose the bottleneck resources of the two loops are ∗
1r and ∗

2r , i.e.

∗= 1211)),((rLLLresbn U and ∗= 2122)),((rLLLresbn U .

Note that the bottlenecks are determined taking into account resource consumption

from both loops. In the case when ∗∗ ≠ 21 rr a similar analysis to that for the case of disjoint

resources applies. In other words, if),(),(122211 LLrrtLLrrt UU
∗∗ < , then the response time

of the system is determined by that of the receiver and may be approximated as:

∑+×−+∑
∈

∗

∈)(
2122

)(
1

21

),(),()1(),(
LresrLresr

LrrtLLrrtnLrrt U

In the case of a slower sender, the overall response time is determined by the sender’s

production time ∑+×−+∑
∈

∗

∈)(
2211

)(
1

21

),(),()1(),(
LresrLresr

LrrtLLrrtnLrrt U .

If ∗∗ = 21 rr (i.e. the bottleneck is a shared resource for the two loops), the response time

of the sender/receiver system is approximated as the sum of the response times of the two

loops:),()1(),(),()1(),(2
)(

21
)(

1
21

LrrtnLrrtLrrtnLrrt
LresrLresr

∗

∈

∗

∈
×−+∑+×−+∑ , where ∗∗∗ == 21 rrr .

The idea that the overall time of a sender/receiver system is determined by the slower

of the two can also be extended to apply to the case of multiple senders and receivers. This

represents the case of a block with a multiple processor home sending tuples to another block

19

executing on multiple processors, with senders and receivers working in parallel. Typically,

redistribution of tuples takes place between the two blocks and different numbers of tuples

may be sent/received by different sending/receiving loops, as illustrated in Fig. 7. The total

time of this system is determined by the slowest of all sending and receiving loops.

BLOCK: block1

BLOCK: block2

HOME: pe1
loop 16 {

resA1 1;
resB1 3;
resC1 4

}

HOME: pe1
loop 4 {

resD1 1;
resB1 2

}

HOME: pe2
loop 8 {

resA2 2;
resB2 6;
resC2 4

}

HOME: pe3
loop 20 {

resA3 4;
resB3 5;
resC3 2

}

Fig. 7 Multi-home blocks in a pipeline.

First, all sending loops are analysed to determine the slowest one, as follows. Consider

sending loop LS. Suppose there is no receiving loop LR sharing resources with LS and let

∗=
SLSS rLLresbn)),((. The response time of LS can be approximated as before:

),()1)((),()(
)(

SLS
Lresr

SS LrrtLiterLrrtLRT
S

S

∗

∈
×−+∑= (1)

where iter(L) is the number of iterations in loop L.

If the set of processors on which the sending and receiving blocks operate are not

disjoint (as in Fig. 7), a receiving loop, LR, may share resources with LS. In this case, let ∗
SLr

be the bottleneck resource of LS, taking into account any shared use. Formally,

)))(,()),(,(),((RRSSSL LiterLLiterLLresBNr
S

=∗ , (2)

where BN(res(L1), (L1, n1), (L2, n2)) returns resource ri ∈ res(L1) such that n1 × rt(ri, L1) + n2

× rt(ri, L2) > n1 × rt(rj, L1) + n2 × rt(rj, L2) for all j ≠ i. Then the response time can be

approximated according to the following formula, which takes into account the use of ∗
SLr

20

within both loops:

),()(

),()1)((),()(

*

*

)(

RLR

SLS
Lresr

SS

LrrtLiter

LrrtLiterLrrtLRT

S

S
S

×

+×−+∑=
∈

(3)

The same analysis can be carried out on each receiving loop, LR, in order to obtain an

estimation of its response time, RT(LR).

The overall response time of the system of senders and receivers is approximated as

follows. Let LS and LR be the sending and receiving loops with the highest response times as

determined by the above procedure. Let their bottlenecks be ∗
SLr and ∗

RLr , respectively.

Suppose that ∗∗ ≠
RS LL rr . If RT(LS) < RT(LR) then:

)()),((avg
)(

R
Lresr

S
L

LRTLrrtRT
iS

i

iS

+∑=
∈

(4)

On the other hand, if RT(LS) > RT(LR), then:

)),((avg)(
)(

∑+=
∈ iR

iR

iR LresrL
S LrrtLRTRT (5)

In the above two formulae, the average initialisation time of all sending/receiving loops

is used to account for the time needed for the first/last tuple to be sent/received.

If, however, ∗∗ =
RS LL rr , then

),()1)((),(

),()1)((),(

)(

)(

RLR
Lresr

R

SLS
Lresr

S

LrrtLiterLrrt

LrrtLiterLrrtRT

R
R

S
S

∗

∈

∗

∈

×−+∑

+×−+∑=

Consider the example given in Fig. 7, which can be used to illustrate the process of

estimating the response time according to the above analysis. Consider first each sending

loop. The loop on PE1 shares a resource (resB1) with the receiving loop on the same node

and therefore (2) and (3) are used to calculate the response time. The bottleneck resource of

this loop (∗
SLr), calculated according to (2), is the shared resource resB1, since its combined

usage within both loops is greater than those of the three other non-shared resources (resA1,

21

resC1 and resD1). The response time of the sending loop can be calculated from (3) as

(1+3+4)+(16–1)×3 + 4×2 = 61.

The sending loop on PE2 does not share any resource usage, and its response time can

be calculated from (1). The bottleneck resource of this loop is resB2 (with response time of

6) and therefore the response time of this sending loop is (2+6+4) + (8-1)×6 = 54.

Consider next the receiving loops. Their response times are estimated in a similar way.

The receiving loop on PE3 does not share resources with a sending loop and evaluates (via

(1)) to (4+5+2) + (20–1)×5 = 106. The receiving loop on PE1, however, shares resource

resB1 with the sending loop on the same node. Resource resB1 is the bottleneck of this loop

and the loop’s response time was computed above as 61. Now consider the sending and

receiving loops with the highest response times. These are the sending loop on PE1 with

response time of 61 and bottleneck resB1 and the receiving loop on PE3 with response time

of 106 and bottleneck resB3. Since the two bottlenecks are different, and the receiving loop

has a higher response time, the overall response time of the system may be approximated

according to (4) as avg(1+3+4, 2+6+4) + 106 = 10 + 106 = 116.

This approach can be extended to a pipeline of three or more stages, as follows. First,

the slowest stage of the pipeline is identified. This stage could be the initial sending stage of

the pipeline, an intermediate sending/receiving stage, or the final receiving stage. The

response time of each stage of the pipeline is determined by the response time of the slowest

sending/receiving loop within the stage, taking account of shared resource usage as needed.

Then, the total time of the pipeline is approximated as the total time of the slowest stage, plus

the average initialisation times within each of the remaining phases, in a similar way to that

explained above.

3.3.4 Overall response time

Thus far, the focus has been on estimating response time for various stages of the execution

22

schedule of the query. The response time for the query as a whole can be determined as

follows.

The pipeline dependencies among blocks are considered in order to determine which

blocks can be analysed together as a single pipeline. The full dependencies are considered to

establish when a block (or group of blocks engaged in a pipeline) must wait for other blocks

to complete before it can begin execution.

Consider the example execution schedule from Fig. 1. The overall response time of the

query is the sum of the response times of three distinct phases within the execution schedule.

The first phase is the two-stage pipeline involving blocks ‘SCAN A’ and ‘BUILD A’. The

second stage consists of the three-stage pipeline involving blocks ‘SCAN B’, ‘PROBE B’ and

‘BUILD A⊗B’. The final phase is the three-stage pipeline involving blocks ‘SCAN C’, ‘PROBE

C’, and ‘AGGREGATE A⊗B⊗C’.

4 Validating the Technique

The ICL Goldrush MegaServer [34,35] is a parallel platform developed as a back-end

database server to host several different database systems (Ingres, Oracle, Informix). In this

section results from the validation of the model are discussed.

4.1 Goldrush and Informix XPS

The basic Goldrush hardware architecture consists of a number of Processing Elements (PEs)

and Communication Elements (CEs) linked by a high speed Deltanet network. Each PE is

connected to its own disc storage subsystem and runs a version of the UNIX operating system

and DBMS code. A CE provides external links for Goldrush to clients via LANs. The

particular Goldrush configuration used here has 1 CE, 8 PEs, 6 discs per PE and a cache of

16MBytes on each PE.

This type of architecture is an ideal platform for the shared-nothing Informix Extended

23

Parallel Server (XPS) [20]. It contains a set of internal components called co-servers, which

are installed on each of the PEs of Goldrush. A co-server provides a user entry point to

Goldrush on a given PE. Locks on data items and all data processing are managed locally

within each co-server. Where deemed suitable, single queries are broken into subtasks and

processed concurrently by threads within a single co-server and across co-servers. Data can

be partitioned across discs and PEs so that parallel I/O operations can take place. The system

can detect that certain partitions are irrelevant for a particular query and would not consider

them when executing the query.

4.2 Tables

The experiments detailed in this section are carried out on a subset of the AS3AP benchmark

[32] tables. In particular, the Uniques relation is used, the structure of which is given in

Table 1. A number of variations of this relation were produced as shown in Table 2.

Attribute name Attribute type
key integer(4)
int integer(4)
signed integer(4)
float real(4)
double double(8)
decim numeric(18,2)
date datetime(8)
code char(10)
name char(20)
address varchar(20)

Table 1 Attributes of Uniques relations

Name Rows Placement
un80 80 1 disc
un30k 30,000 1 disc
un90k 90,000 1 disc
un120k 120,000 1 disc
un270k 270,000 1 disc of each PE

un540k 540,000 1 disc of each PE

Table 2 Uniques relations used

Un270k and un540k are fragmented into 8 fragments by a simple hash function on the

key primary key attribute with one hash fragment placed on a single disc of each of the PEs.

Each tuple has a unique value for attributes key and int. Attribute signed, however, is

modified from the benchmark specification so that for each relation tuples have signed values

in the range 1 to 10 with an equal number of tuples for each value. Scans involving tables

placed on one PE are not parallelised. Those involving tables un270k and un540k, however,

24

are performed in parallel by all co-servers containing the table data.

4.3 Queries

A number of different queries, classified in the following groups, were considered:

Simple select-project-aggregate queries. This group of queries exercises the ability

of the method to work for the simple relational operations select, project and aggregate.

Different tables (X), predicates (Y) and aggregation operators (max, count, etc) are used, as

shown in Fig. 8(a).

Simple hash-join queries. Each of these queries (Fig. 8(b)) finds the maximum value

of the int attribute from the result of a join of un80 with the other Uniques tables where the

int values are the same. Each of the other tables contains the tuples of un80 so that the size of

the resulting join is 80 tuples. The query employs a hash-join algorithm, which builds a hash

table across all co-servers using un80 and subsequently probes this with the tuples from X.

(c)

(b)

(a)

(1) select max(int)
from X
where key > 0;

(2) select max(int), min(int)
from X
where Y;

(3) select max(int), min(int), avg(int), count(*)
from X
where Y;

X = un30k, un90k, un270k, un540k;
Y = “ signed not in (1)” ,

“ signed not in (1, 3, 5)”

select max(un80.int)
from un80, X
where un80.int = X.int

X = un30k, un90k, un270k, un540k

select max(int)
from un30k
where int > (select max(key)

from un30k
where signed not in (1,3,5));

max1 = select max(key)
from un30k
where signed not in (1,3,5);

select max(int)
from un30k
where int > max1

Fig. 8 Queries used for validation

Simple nested query and equivalent non-nested version. This is a simple example

of the use of a sub-query. The sub-query is used to return the maximum value of the key

attribute from a subset of the tuples of un30k. This value is then used in the predicate of the

25

outer query. Note that this is not a correlated sub-query, and the execution plan indicates that

Informix executes the sub-query first followed by the outer query. An equivalent “ flat”

formulation of the query was also considered, as shown in Fig. 8(c). The sub-query executes

first as an independent query. Following it, a second query uses its result to compute the

maximum int value. Although equivalent in their execution, the two queries have different

response time characteristics, as discussed briefly in Section 4.5.

A union query. This query, shown in Fig. 9(a) illustrates the execution of the Informix

union operator when there is opportunity for parallelism. The query groups together the

maximum int values from tables un30k and un270k. It was expected that some form of

parallelism would be used when executing the query. However, the execution plans indicate

a sequential execution, with un30k scanned first, followed by the scanning of un270k, and

followed by the union operator. To investigate this, the same query was executed with two

un90k tables, specifically created on different processing elements and discs of Goldrush.

Even in this case, where clearly the query can execute in half the time if the two relations are

scanned in parallel, Informix chooses to perform the two scans in sequence.

A three-way hash-join. The execution schedule of this query was discussed in Section

3.1 and shown in Fig. 1. The query is shown in Fig. 9(b). Tables A, B and C, used in the

discussion, correspond to un80, un90k, and un30k, respectively.

(a)

(b)

select max(int)
from un30k
where int > 0

union all

select max(int)
from un270k
where int > 0

select max(un30k.int),
count(un30k.int)

from un90k, un30k, un80
where un90k.key = un30k.key

and un30k.key = un80.key

Fig. 9 Queries used for validation

4.4 Taking Measurements

Calibration of the model required running a carefully constructed set of queries in order to

26

estimate the cost of basic operations. The parallelised query execution plans produced by the

optimiser were used to determine the way in which queries were broken down by the system

and what basic operations were involved. Their costs were then obtained using the Informix

XPS performance measuring tool onstat.

Once this was complete, a transaction generator was created to emulate a parallel

database system workload with many users independently querying the data. It was used to

fire queries from the communication element (CE) to a given co-server at a specified rate.

Two generators were created. The first fired transactions with constant inter-arrival times

and was used to determine the arrival rate for which the maximum throughput of the machine

can be achieved. The throughput was computed by dividing the number of completed

transactions by the time between the start time of the first transaction and the end time of the

last one. Initially, the measured throughput is equal to the arrival rate at which the queries

are fired. As the arrival rate is increased, a value is reached beyond which the measured

throughput does not increase further. This is taken to be the maximum system throughput.

The second version of the transaction generator fired transactions with exponentially

distributed inter-arrival times and was used to obtain transaction response times. The highest

arrival rate used for the exponential generator was equal to 80% of the rate at which the

maximum throughput (determined using the deterministic generator) was achieved. For each

arrival rate the generator was set to fire transactions until 100 transactions were fired. The

response time of each query was recorded, and the average was formed to compare against

the value estimated by the analytical method. At the higher arrival rates, when queues would

build quickly and the system would take longer to settle into a steady state, more than 100

queries were run when needed. Note that due to the good repeatability of measurements

obtained from Informix, it was generally found necessary to repeat experiments no more than

three times.

27

4.5 Results

Simple select-project-aggregate queries. Fig. 10 shows the maximum throughput

prediction against actual measured throughput for one of the queries. The x-axis represents

arrival rate and the y-axis – throughput. The prediction produced by the tool is a single

figure: the maximum possible throughput, which is independent of the arrival rate. The

predicted maximum throughput is higher than the one achieved by the system. This can be

attributed to additional operating system overhead for which no account has been taken in the

model, or to inaccuracies in the measured basic costs. Despite this, the predicted maximum

throughput is an acceptable upper limit of the achieved maximum system throughput.

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.04 0.06 0.08 0.1 0.12

arrival rate (trx/sec)

th
ro

ug
hp

ut
 (

tr
x/

se
c)

measured
predicted maximum

0.117497

Fig. 10 Throughput for type (1) query on
un90k

0

5

10

15

20

25

30

35

40

45

0.01 0.03 0.05 0.07 0.09 0.11

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 11 Response time for type (1) query on
un90k

The response time predictions for this query are shown in Fig. 11. The x-axis measures

arrival rate, while the y-axis represents the response time. The prediction is accurate to

within 10% for the entire range of arrival rates.

All the experiments reported here were performed with the data present in cache. By

comparison, consider a query of type (1) using table un120k, for which all data pages are read

from disc. The results from two experiments performed are presented in Table 3. The arrival

rates of the experiments correspond to 40% and 80% of the maximum throughput.

experiment arrival rate response time (sec)
(trx/sec) measured predicted

relative error (%)

1 0.03 24.9 23.9 -4.0
2 0.06 74.8 83.4 11.5

Table 3 Results for query reading pages from disc

Simple hash-join queries. Fig. 12 shows the maximum throughput prediction against

28

actual measured throughput for this query on table un540k. Again the tool’ s prediction is

higher than the achieved maximum throughput. Fig. 13 shows the response time prediction

compared with measured response time.

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.06 0.08 0.1 0.12 0.14 0.16

arrival rate (trx/sec)

th
ro

ug
hp

ut
 (

tr
x/

se
c)

measured

predicted maximum

0.148249

Fig. 12 Throughput for simple hash-join
query on un540k

0

5

10

15

20

25

30

35

40

45

50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 13 Response time for simple hash-join
query on un540k

Simple nested query and equivalent non-nested version. The graph in Fig. 14 shows

the response time prediction and the corresponding measured values for the non-nested

version of this query. The tool compares better with the non-nested query. The nested

version of the query seems to involve extra resource usage, which can be attributed to the

query optimiser ‘un-nesting’ the original query. The performance model does not currently

account for this type of activity.

Three-way hash-join query. The response time results obtained for this query are

presented in Fig. 15. The predicted values are within 15% of the measured values.

0

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 14 Response time for non-nested
version of query

0

5

10

15

20

25

30

35

40

45

50

0.01 0.03 0.05 0.07 0.09 0.11

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 15 Response time for a three-table hash
join query

The results of the response time prediction method for all queries are summarised in

Table 4. The table gives the number of experiments and indicates the magnitude of the

relative percentage error computed from the predicted and measured response time for each

29

query category.

experiments
0% - 60% max throughput 70% - 80% max throughputQuery

no. of
exp.

no. with
err. below

10%

no. with
err. 10-

20%

no. with
err. 20-

30%

no. of
exp.

no. with
err. below

10%

no. with
err. 10-

20%

no. with
err. 20-

30%
type 1 11 9 2 - 5 4 1 -
type 1 (from disc) 1 1 - - 1 - 1 -
type 2 21 17 4 - 9 5 4 -
type 3 15 3 12 - 8 - 3 5
simple hash-join 8 - 8 - 6 - 3 3
non-nested 5 4 1 - 11 - 6 5
union 3 3 - - 5 - - 5
triple join 3 3 - - 2 - 2 -

Table 4 Summary of results

The experiments are divided into two groups depending on the value of the arrival rate

for the experiment. The first category is for arrival rates that are up to and including 60% of

predicted maximum throughput, while the second is for rates between 70% and 80%.

A two-query application. The results of a two-query application are also presented.

The two chosen queries are a type (3) query on relation un30k with predicate ‘signed not in

(1, 3, 5)’ and a type (1) query on relation un30k (see Fig. 8). The queries are assigned

different frequencies: 70% for the first and 30% for the second. The measured and

approximated response times of the two queries are presented in Fig. 16 and Fig. 17. There is

a reasonable match between the approximation and the measured values.

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25 0.3

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 16 Response time of first query

0

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25 0.3

arrival rate (trx/sec)

re
sp

on
se

 ti
m

e
(s

ec
)

measured

predicted

Fig. 17 Response time of second query

5 Conclusions

In this paper an analytical technique is presented for response time estimation of queries

executing within a shared-nothing parallel database management system. This technique

30

deals with the problem of non-exponential servers as well as with dependencies such as

pipelining. It is based on a heuristic approach, used to obtain a better approximation of the

behaviour of a network of non-exponential servers as used in parallel database systems than

other approximation techniques. The techniques were validated by comparing their

predictions against actual performance measurements on a parallel database system. The

experiments indicate that the estimated and measured quantities are in reasonably good

agreement. In particular, the predicted maximum throughput is typically higher than the

measured maximum throughput by up to 15%. A possible explanation for this is additional

resource consumption due to activity by non-DBMS processes or the operating system itself.

Such activity is not accounted for within the models at present. Despite this, the

approximation to the maximum system throughput is acceptable.

The experiments also show that the response time approximation technique produces

reasonably good results. In particular, a total of 114 separate experiments were performed

involving different transactions and arrival rates. In 96 of the experiments (over 84%) the

relative error is less than 20%. In half of these, the error is less than 10%. For the remaining

18 experiments, the highest error is under 30%. Generally, the error is smaller for the lower

transaction arrival rates and increases as the arrival rate is increased.

Acknowledgements

The authors acknowledge the support received from the UK Engineering and Physical

Sciences Research Council (EPSRC) under the PSTPA programme (GR/K40345) and from

the Commission of the European Union under the Framework IV programme (Mercury

project). They also wish to thank Arthur Fitzjohn and Monique Mitchell of ICL.

31

References

[1] L. Anciano, N.N. Savino, J.A. Corbacho and R. Puigjaner, “ Extending SMART2 to

predict the behaviour of PL/SQL-based applications” , in Proc. of 10th Int. Conf. on

Modelling Techniques and Tools for Computer Performance Evaluation (Tools’98),

Palma de Mallorca, Spain, pp.292-305, 14-18 Sept. 1998.

[2] B. Bergsten, M. Couprie and P. Valduriez, “ Prototyping DBS3, a shared-memory

parallel database system” , Proc. of the 1st Int. Conf. on Parallel and Distributed

Information Systems, Miami Beach, FL, USA, p.226-234, 4-6 Dec 1991.

[3] BEZ Systems Inc., “ BEZPlus for NCR Teradata and Oracle environments on MPP

machines” , http://www.bez.com/software.htm, 1999.

[4] G. Bolch, S. Greiner, H. de Meer and K.S. Trivedi, “ Queueing networks and Markov

chains: modelling and performance evaluation with computer science applications” ,

John Wiley & Sons Inc., 1998.

[5] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M.

Smith and P. Valduriez, “ Prototyping Bubba, a highly parallel database system” , IEEE

Transactions on Knowledge and Data Engineering, vol.2, no.1, pp.4-24, Mar 1990.

[6] J. Boulos and D. Boudigue, “ An application of SMART2: a tool for performance

evaluation of relational database programs” , in Joint proc. of 8th Int. Conf. on

Modelling Techniques and Tools for Computer Performance Evaluation and 8th

GI/ITG Conf. on Measuring, Modelling and Evaluating Computing and

Communication Systems, Heidelberg, Germany, pp.11-25, 20-22 Sept. 1995.

[7] A. Dan, “ Performance Analysis of Data Sharing Environments” , The MIT Press, 1992.

[8] A. Dan and P. Yu, “ Performance analysis of buffer coherency policies in a

multisystem data sharing environment” , IEEE Trans. On Parallel and Distributed

Systems, vol. 4, no. 3, pp. 289-305, March 1993.

32

[9] E. Dempster, N. Tomov, J. Lu, C. Pua, M. H. Williams, A. Burger, H. Taylor and P.

Broughton, “ Verifying a Performance Estimator for Parallel DBMSs” , in Proc. of 4th

Int. Euro-Par Conf. (Euro-Par ‘98 Parallel Processing), Southampton, UK, pp. 126-

135, September 1-4, 1998.

[10] D. Dewitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.I. Hsiao and R.

Rasmussen, “ Gamma database machine project” , IEEE Transactions on Knowledge

and Data Engineering, vol.2, no.1, pp.44-62, Mar 1990.

[11] R. Eberhard, IBM Corp. “ DB2 Estimator for Windows” ,

http://www.software.ibm.com/data/db2/os390/estimate, 1999.

[12] T. Foxon, M. Garth and P. Harrison, “ Capacity planning in client-server systems” ,

Journal of Distributed Systems Engineering, vol. 3, pp. 32-38, 1996.

[13] S. Ganguly, W. Hasan and R. Krishnamurthy, “ Query optimisation for parallel

execution” . In Proc. of the 1992 ACM SIGMOD Int. Conf. on Management of Data,

San Diego, California, pp. 9-18, June 1992.

[14] M. Garofalakis and Y. E. Ioannidis, “ Multi-dimensional resource scheduling for

parallel queries” , In Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of

Data, Montreal, Canada, pp.365-376, June 1996.

[15] M. Garth, “ Capacity planning for parallel IT systems” , The Computer Bulletin, vol. 8,

no. 5, pp. 16-18, November 1996.

[16] M. Garth, “ Modelling parallel architectures” , Metron Technology white paper,

http://www.metron.co.uk/papers.htm#PARA, 1996.

[17] G. Graefe, “ Parallelizing the volcano database query processor” , Proc. 35th IEEE

Computer Society Int. Conf., pp.490-493, 26 Feb - 02 Mar 1990.

[18] W. Hong and M. Stonebraker, “ Optimization of parallel query execution plans in

XPRS” , Distributed and Parallel Databases, vol.1, no.1, pp.9-32, Jan 1993.

33

[19] H. Hsiao, M. Chen and P. Yu, “ On parallel execution of multiple pipelined hash

joins” , In Proc. of the 1994 ACM SIGMOD Int. Conf. on Management of Data,

Minneapolis, Minnesota, pp.185-196, May 1994.

[20] Informix Software Inc., “ Informix-OnLine extended parallel server for loosely

coupled cluster and massively parallel processing architectures” , Informix White

Paper, http://www.informix.com, 1998.

[21] M. Molloy, “ Fundamentals of performance modelling” , Macmillan Publishing

Company, 1989.

[22] Platinum Technology, “ Proactive performance engineering” , Platinum Technology

white paper, http://www.softool.com/products/ppewhite.htm, 1999.

[23] S. Salza and M. Renzetti, “ Performance modelling of parallel database systems” ,

Informatica, vol.22, pp.127-139, 1998.

[24] S. Salza and R. Tomasso, “ A modelling tool for the performance analysis of

relational database applications” , In Proc. 6th Int. Conf. on Modelling Techniques and

Tools for Computer Performance Evaluation, pp.323-337, 1992.

[25] SES Inc., “ Solutions for information systems performance” ,

http://www.ses.com/Solution/IS.html, 1999.

[26] K. Sevcik, “ Data base system performance prediction using an analytical model” , In

Proc. of the 7th Int. Conf. on Very Large Data Bases, Cannes, France, pp. 182-197,

September, 1981.

[27] G. Sigalov and B. Zibitsker, “ Performance evaluation of database computers with

high level of parallel processing” , In Proc.of the 19th Int. Conf. for the Management

and Performance Evaluation of Enterprise Computing Systems, San Diego,

California, pp. 1100-1109, December 1993.

34

[28] M. Spiliopoulou and J. C. Freytag, “ Modelling the dynamic evolution of system

workload during pipelined query execution” , Technical Report ISS-20, Institut für

Wirtschaftsinformatik, Humboldt-Universität zu Berlin, Germany, 1995.

[29] M. Spiliopoulou and J. C. Freytag, “ Modelling resource utilisation in pipelined query

execution” , in Proc. of 2nd Int. Euro-Par Conf., Lyon, France, pp. 872-880, 26-29

Aug, 1996.

[30] M. Spiliopoulou, M. Hatzopoulos and Y. Cotronis, “ Parallel optimization of large

join queries with set operators and aggregates in a parallel environment supporting

pipeline” , IEEE Trans. On Knowledge and Data Engineering, vol. 8, no.3, pp.429-

445, June 1996.

[31] N. Tomov, E. Dempster, M. H. Williams, P. King and A. Burger, “ Approximate

estimation of transaction response time “ , The Computer Journal, to appear, 1999.

[32] C. Turbyfill, C. Orji and D. Bitton, “ AS3AP: an ANSI SQL standard scaleable ad

portable benchmark for relational database systems” , in J. Gray (ed.), The benchmark

handbook for database and transaction processing systems, 2nd edition, pp. 317-357,

1993.

[33] C. Walton, A. Dale and R. Jenevein, “ A taxonomy and performance model of data

skew effects in parallel joins” , In Proc. of the 17th Int. Conf. on Very Large Data

Bases, Barcelona, Spain, pp.537-548, September 1991.

[34] P. Watson and G. Catlow, “ The architecture of the ICL Goldrush MegaServer” , ICL

Systems Journal, vol. 10, no. 2, http://www.icl.com/sjournal/v10i2/v10i2a1.html,

November 1995.

[35] P. Watson and T. Robinson, “ The hardware architecture of the ICL Goldrush

MegaServer” , ICL Systems Journal, vol. 10, no. 2,

http://www.icl.com/sjournal/v10i2/v10i2a2.html, November 1995.

35

[36] P. Watson and P. Townsend, “ The EDS parallel relational database system” , in P.

America (ed.), Proc. of Workshop on Parallel Database Systems, Noordwijk, the

Netherlands, pp. 149-166, Sept. 1991.

[37] M. H. Williams, E. W. Dempster, N. T. Tomov, C. S. Pua, H. Taylor, A. Burger, J.

Lu and P. Broughton, “ An analytical tool for predicting the performance of parallel

relational databases” , Concurrency: Practice and Experience, to appear 1999.

[38] S. Zhou, M.H. Williams and H. Taylor, “ Practical throughput estimation for parallel

databases” , Software Engineering Journal, vol.11, no.4, pp.255- 263, Jul 1996.

