317 research outputs found

    Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation

    Get PDF
    Hydroclimate variability has exerted a fundamental control on the alternating deposition of organic-lean marl and organic-rich sapropel sediments in the eastern Mediterranean Sea (EMS). However, the exact mechanisms regarding the freshwater sources and related changes are still debated. Here, Sr and Nd isotopes and high-resolution elemental data are used to constrain different riverine and eolian supplies to the central Mediterranean over the past 9.8 ka. The detrital sediments in core CP10BC, taken at the margin of the Libyan shelf in the southwestern Ionian Sea, can be described by a three-endmember mixing system based on Sr and Nd isotopic compositions. The same systematics can also be deduced from Ti and K compositional variability. The endmembers comprise: Saharan Dust, Aegean/Nile, and Libyan Soil, representing the eolian supply from North Africa, the riverine inputs from the Aegean/Nile areas, as well as the riverine and shelf-derived fluxes from the Libyan-Tunisian margin, respectively. For the sapropel S1 period in particular, we find important detrital supplies from fossil river/wadi systems along the Libyan-Tunisian margin, activated by intensified African monsoon precipitation. Combining the temporal profiles with the consistent variability observed in the 87Sr/86Sr–1000/Sr diagram, such Libyan contribution has been most prominent during the uppermost period of sapropel S1 in core CP10BC. This observation is in agreement with hydroclimate reconstructions of northwestern Libya. Comparison of the Sr-Nd isotope data between core CP10BC and four cores taken along a west–east transect throughout the EMS shows that this detrital supply originated mainly from western Libya/Tunisia, and was transported as far eastward as ∼25°E while being diluted by an increasing Nile contribution

    Alpha-decay properties of superheavy elements Z=113−125Z=113-125 in the relativistic mean-field theory with vector self-coupling of ω\omega meson

    Full text link
    We have investigated properties of α\alpha-decay chains of recently produced superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with inclusion of the vector self-coupling of ω\omega meson in the framework of the relativistic mean-field theory. It is shown that the experimentally observed alpha-decay energies and half-lives are reproduced well by this Lagrangian model. Further calculations for the heavier elements with Z=117-125 show that these nuclei are superdeformed with a prolate shape in the ground state. A superdeformed shell-closure at Z=118 lends an additional binding and an extra stability to nuclei in this region. Consequently, it is predicted that the corresponding QαQ_\alpha values provide α\alpha-decay half-lives for heavier superheavy nuclei within the experimentally feasible conditions. The results are compared with those of macroscopic-microscopic approaches. A perspective of the difference in shell effects amongst various approaches is presented and its consequences on superheavy nuclei are discussed.Comment: Revised version, 14 pages, 12 eps figures. To appear in PRC. Discussion on shell effects is shortened in the revised version. However, commonality of the role of shell effects in extreme superheavy regions and in the regions near the r-process path is maintained. Existence of a secondary superdeformed minimum for Z=113 is verified with another Lagrangian se

    Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-rich Ocean Model VIKING20X

    Get PDF
    A hierarchy of global 1/4° (ORCA025) and Atlantic Ocean 1/20° nested (VIKING20X) ocean/sea-ice models is described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50–60 years under CORE and JRA55-do atmospheric forcings realistically simulate the large-scale horizontal circulation, the distribution of the mesoscale, overflow and convective processes, and the representation of regional current systems in the North and South Atlantic. The representation, and in particular the long-term temporal evolution, of the Atlantic Meridional Overturning Circulation (AMOC) strongly depends on numerical choices for the application of freshwater fluxes. The interannual variability of the AMOC instead is highly correlated among the model experiments and also with observations, including the 2010 minimum observed by RAPID at 26.5° N pointing at a dominant role of the forcing. Regional observations in western boundary current systems at 53° N, 26.5° N and 11° S are explored in respect to their ability to represent the AMOC and to monitor the temporal evolution of the AMOC. Apart from the basin-scale measurements at 26.5° N, it is shown that in particular the outflow of North Atlantic Deepwater at 53° N is a good indicator of the subpolar AMOC trend during the recent decades, if the latter is provided in density coordinates. The good reproduction of observed AMOC and WBC trends in the most reasonable simulations indicate that the eddy-rich VIKING20X is capable in representing realistic forcing-related and ocean-intrinsic trends

    Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam

    Get PDF
    The Song Gianh is a small-sized (~3500 km2), monsoon-dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U-Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong-Yinggehai Basin (17–21 of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre-Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption

    Global ocean modeling and state estimation in support of climate research

    Get PDF
    During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research

    Understanding the structure of changes in the Southern Ocean eddy field

    Get PDF
    The Southern Ocean is riddled with mesoscale eddies. Although just a few km in size, these loops and vortices are key parts of the climate system, and are important in controlling how ocean circulation responds to changes in forcing. Observations reveal that changes in the intensity of these eddies vary significantly around the Southern Ocean. This contrasts with the nature of the atmospheric forcing, which is more zonally symmetric. Recent progress using high-resolution modeling has pinpointed where intrinsic variability dominates over wind-driven variability, and hence the areas where future responses to climatic changes in forcing are likely to be clearest

    The Randomized Shortened Dental Arch Study: Tooth Loss

    Get PDF
    The evidence concerning the management of shortened dental arch (SDA) cases is sparse. This multi-center study was aimed at generating data on outcomes and survival rates for two common treatments, removable dental prostheses (RDP) for molar replacement or no replacement (SDA). The hypothesis was that the treatments lead to different incidences of tooth loss. We included 215 patients with complete molar loss in one jaw. Molars were either replaced by RDP or not replaced, according to the SDA concept. First tooth loss after treatment was the primary outcome measure. This event occurred in 13 patients in the RDP group and nine patients in the SDA group. The respective Kaplan-Meier survival rates at 38 months were 0.83 (95% CI: 0.74-0.91) in the RDP group and 0.86 (95% CI: 0.78-0.95) in the SDA group, the difference being non-significant

    Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT

    Get PDF
    Purpose!#!After a decade of PET/MR, the case of attenuation correction (AC) remains open. The initial four-compartment (air, water, fat, soft tissue) Dixon-based AC scheme has since been expanded with several features, the latest being MR field-of-view extension and a bone atlas. As this potentially changes quantification, we evaluated the impact of these features in PET AC in prostate cancer patients.!##!Methods!#!Two hundred prostate cancer patients were examined with either !##!Results!#!High correlation and no visually perceivable differences between all evaluated methods (r > 0.996) were found. The mean relative difference in lesion uptake of !##!Conclusions!#!Based on these results and the encountered bone atlas registration inaccuracy, we deduce that including bones and extending the MR field-of-view did not introduce clinically significant differences in PSMA diagnostic accuracy and tracer uptake quantification in prostate cancer pelvic lesions, facilitating the analysis of serial studies respectively. However, in the absence of ground truth data, we advise against atlas-based methods when comparing serial scans for bone lesions

    Eddy diffusivities estimated from observations in the Labrador Sea

    Get PDF
    Eddy diffusivities in the Labrador Sea (LS) are estimated from deep eddy resolving float trajectories, moored current meter records, and satellite altimetry. A mean residence time of 248 days in the central LS is observed with several floats staying for more than 2 years. By applying a simple random walk diffusion model, the observed distribution of float residence times in the central LS could be explained by a mean eddy diffusivity of about 300 m2 s−1. Estimates from float trajectories themselves and from moored current meter records yield significantly higher eddy diffusivities in the central LS of 950–1100 m2 s−1. This discrepancy can be explained by an inhomogeneity of the eddy diffusivity at middepth with high/low values in the central LS/region between central LS and deep Labrador Current, which could be conjectured from the mean altimetric eddy kinetic energy (EKE) distribution. The different diffusivities explain both (1) a fast lateral homogenization of water masses in the central LS and (2) a weak exchange between central LS and boundary current. The mean Lagrangian length scale of 11.5 ± 0.7 km as estimated from deep float trajectories is only slightly larger than the mean Rossby radius of deformation (8.8 km). Largest eddy diffusivities within the central LS are associated with strong eddy drifts, rather than with large swirl velocities and associated large EKE. between central LS and deep Labrador Current, which could be conjectured from the mean altimetric eddy kinetic energy (EKE) distribution. The different diffusivities explain both (1) a fast lateral homogenization of water masses in the central LS and (2) a weak exchange between central LS and boundary current. The mean Lagrangian length scale of 11.5 ± 0.7 km as estimated from deep float trajectories is only slightly larger than the mean Rossby radius of deformation (8.8 km). Largest eddy diffusivities within the central LS are associated with strong eddy drifts, rather than with large swirl velocities and associated large EKE
    • …
    corecore