60 research outputs found

    Non-uniqueness of the Dirac theory in a curved spacetime

    Full text link
    We summarize a recent work on the subject title. The Dirac equation in a curved spacetime depends on a field of coefficients (essentially the Dirac matrices), for which a continuum of different choices are possible. We study the conditions under which a change of the coefficient fields leads to an equivalent Hamiltonian operator H, or to an equivalent energy operator E. In this paper, we focus on the standard version of the gravitational Dirac equation, but the non-uniqueness applies also to our alternative versions. We find that the changes which lead to an equivalent operator H, or respectively to an equivalent operator E, are determined by initial data, or respectively have to make some point-dependent antihermitian matrix vanish. Thus, the vast majority of the possible coefficient changes lead neither to an equivalent operator H, nor to an equivalent operator E, whence a lack of uniqueness. We show that even the Dirac energy spectrum is not unique.Comment: 13 pages (standard 12pt article format). Text of a talk given at the 1st Mediterranean Conference on Classical and Quantum Gravity, Kolymbari (Greece), Sept. 14-18, 200

    Gravitational Energy Loss and Binary Pulsars in the Scalar Ether-Theory of Gravitation

    Full text link
    Motivation is given for trying a theory of gravity with a preferred reference frame (``ether'' for short). One such theory is summarized, that is a scalar bimetric theory. Dynamics is governed by an extension of Newton's second law. In the static case, geodesic motion is recovered together with Newton's attraction field. In the static spherical case, Schwarzschild's metric is got. An asymptotic scheme of post-Minkowskian (PM) approximation is built by associating a conceptual family of systems with the given weakly-gravitating system. It is more general than the post-Newtonian scheme in that the velocity may be comparable with cc. This allows to justify why the 0PM approximation of the energy rate may be equated to the rate of the Newtonian energy, as is usually done. At the 0PM approximation of this theory, an isolated system loses energy by quadrupole radiation, without any monopole or dipole term. It seems plausible that the observations on binary pulsars (the pulse data) could be nicely fitted with a timing model based on this theory.Comment: Text of a talk given at the 4th Conf. on Physics Beyond the Standard Model, Tegernsee, June 2003, submitted to the Proceedings (H. V. Klapdor-Kleingrothaus, ed.

    Equivalent forms of Dirac equations in curved spacetimes and generalized de Broglie relations

    Full text link
    One may ask whether the relations between energy and frequency and between momentum and wave vector, introduced for matter waves by de Broglie, are rigorously valid in the presence of gravity. In this paper, we show this to be true for Dirac equations in a background of gravitational and electromagnetic fields. We first transform any Dirac equation into an equivalent canonical form, sometimes used in particular cases to solve Dirac equations in a curved spacetime. This canonical form is needed to apply the Whitham Lagrangian method. The latter method, unlike the WKB method, places no restriction on the magnitude of Planck's constant to obtain wave packets, and furthermore preserves the symmetries of the Dirac Lagrangian. We show using canonical Dirac fields in a curved spacetime, that the probability current has a Gordon decomposition into a convection current and a spin current, and that the spin current vanishes in the Whitham approximation, which explains the negligible effect of spin on wave packet solutions, independent of the size of Planck's constant. We further discuss the classical-quantum correspondence in a curved spacetime based on both Lagrangian and Hamiltonian formulations of the Whitham equations. We show that the generalized de Broglie relations in a curved spacetime are a direct consequence of Whitham's Lagrangian method, and not just a physical hypothesis as introduced by Einstein and de Broglie, and by many quantum mechanics textbooks.Comment: PDF, 32 pages in referee format. Added significant material on canonical forms of Dirac equations. Simplified Theorem 1 for normal Dirac equations. Added section on Gordon decomposition of the probability current. Encapsulated main results in the statement of Theorem

    Dirac equation from the Hamiltonian and the case with a gravitational field

    Full text link
    Starting from an interpretation of the classical-quantum correspondence, we derive the Dirac equation by factorizing the algebraic relation satisfied by the classical Hamiltonian, before applying the correspondence. This derivation applies in the same form to a free particle, to one in an electromagnetic field, and to one subjected to geodesic motion in a static metric, and leads to the same, usual form of the Dirac equation--in special coordinates. To use the equation in the static-gravitational case, we need to rewrite it in more general coordinates. This can be done only if the usual, spinor transformation of the wave function is replaced by the 4-vector transformation. We show that the latter also makes the flat-space-time Dirac equation Lorentz-covariant, although the Dirac matrices are not invariant. Because the equation itself is left unchanged in the flat case, the 4-vector transformation does not alter the main physical consequences of that equation in that case. However, the equation derived in the static-gravitational case is not equivalent to the standard (Fock-Weyl) gravitational extension of the Dirac equation.Comment: 27 pages, standard LaTeX. v2: minor style changes, accepted for publication in Found. Phys. Letter

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient

    A spatially-VSL gravity model with 1-PN limit of GRT

    Full text link
    A scalar gravity model is developed according the 'geometric conventionalist' approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach 1957, Gruenbaum1973). In principle this approach allows an alternative interpretation and formulation of General Relativity Theory (GRT), with distinct i) physical congruence standard, and ii) gravitation dynamics according Hamilton-Lagrange mechanics, while iii) retaining empirical indistinguishability with GRT. In this scalar model the congruence standards have been expressed as gravitationally modified Lorentz Transformations (Broekaert 2002). The first type of these transformations relate quantities observed by gravitationally 'affected' (natural geometry) and 'unaffected' (coordinate geometry) observers and explicitly reveal a spatially variable speed of light (VSL). The second type shunts the unaffected perspective and relates affected observers, recovering i) the invariance of the locally observed velocity of light, and ii) the local Minkowski metric (Broekaert 2003). In the case of a static gravitation field the model retrieves the phenomenology implied by the Schwarzschild metric. The case with proper source kinematics is now described by introduction of a 'sweep velocity' field w: The model then provides a hamiltonian description for particles and photons in full accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972, Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved, section on acceleration transformation added, text improved, more references, same results, v3: typos removed, footnotes, added and references updated, v4: appendix added, improved tex

    A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer

    Full text link
    We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of Ultracold neutrons at specula trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena
    corecore