672 research outputs found

    Fine strand-like structure in the solar corona from MHD transverse oscillations

    Full text link
    Current analytical and numerical modelling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organise itself in fine strand-like structures of few hundred kilometres widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modelling of 3D MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period and can be observed for spatial resolutions of a tenth of loop radius.Comment: Accepted for publication in ApJ

    Forward Modelling of Standing Slow Modes in Flaring Coronal Loops

    Full text link
    Standing slow mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Due to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow mode waves in flaring loops and compare the synthesized line emission properties with SUMER spectrographic and SDO/AIA imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity both in time and spatial domain, which can be used to identify a standing slow mode wave from spectroscopic observations. However, the longitudinal overtones could be only measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations, this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variations. One may detect \textbf{half} periodicity close to the loop apex, where emission intensity modulation is relatively small. The line-of-sight projection affects the observation of Doppler shift significantly. A more accurate estimate of the amplitude of velocity perturbation is obtained by de-projecting the Doppler shift by a factor of 12θ/π1-2\theta/\pi rather than the traditionally used cosθ\cos\theta. \textbf{If a loop is heated to the hotter wing, the intensity modulation could be overwhelmed by background emission, while the Doppler shift velocity could still be detected to a certain extent.Comment: 18 pages, 10 figures, Astrophysics Journa

    Kelvin–Helmholtz Instability and Alfvénic Vortex Shedding in Solar Eruptions

    Get PDF
    We report on a three-dimensional MHD numerical experiment of a small-scale coronal mass ejection (CME)-like eruption propagating though a nonmagnetized solar atmosphere. We find that the Kelvin–Helmholtz instability (KHI) develops at various but specific locations at the boundary layer between the erupting field and the background atmosphere, depending on the relative angle between the velocity and magnetic field. KHI develops at the front and at two of the four sides of the eruption. KHI is suppressed at the other two sides of the eruption. We also find the development of Alfvénic vortex shedding flows at the wake of the developing CME due to the 3D geometry of the field. Forward modeling reveals that the observational detectability of the KHI in solar eruptions is confined to a narrow ≈10° range when observing off-limb, and therefore its occurrence could be underestimated due to projection effects. The new findings can have significant implications for observations, for heating, and for particle acceleration by turbulence from flow-driven instabilities associated with solar eruptions of all scales

    The role of torsional Alfven waves in coronal heating

    Full text link
    In the context of coronal heating, among the zoo of MHD waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption or turbulent cascade in order to heat the plasma. New observations with polarimetric, spectroscopic and imaging instruments such as those on board of the japanese satellite Hinode, or the SST or CoMP, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5-dimensional MHD code we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes and the nature of the waves (monochromatic or white noise spectrum). It is found that independently of the photospheric wave amplitude and magnetic field a corona can be produced and maintained only for long (> 80 Mm) and thick (area ratio between photosphere and corona > 500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km/s) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several constraints on Alfven wave heating as a coronal heating mechanism, especially for active region loops.Comment: 39 pages, 8 figures; http://stacks.iop.org/0004-637X/712/49

    The multi-thermal and multi-stranded nature of coronal rain

    Full text link
    In this work, we analyse coordinated observations spanning chromospheric, TR and coronal temperatures at very high resolution which reveal essential characteristics of thermally unstable plasmas. Coronal rain is found to be a highly multi-thermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated to coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found, in which TR to chromospheric temperature transition occurs at the lowest detectable scales. The shape of the distribution of coronal rain widths is found to be independent of temperature with peaks close to the resolution limit of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase of clump numbers at the coolest wavelengths and especially at higher resolution, suggesting that the bulk of the rain distribution remains undetected. Rain clumps appear organised in strands in both chromospheric and TR temperatures, suggesting an important role of thermal instability in the shaping of fundamental loop substructure. We further find structure reminiscent of the MHD thermal mode. Rain core densities are estimated to vary between 2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages, figures (and movies, but not included here). Accepted for publication in the Astrophysical Journa

    Fine strand-like structure in the solar corona from magnetohydrodynamic transverse oscillations

    Get PDF
    Current analytical and numerical modeling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organize itself in fine strand-like structures of few hundred kilometers widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modeling of three-dimensional MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period, and can be observed for spatial resolutions of a tenth of loop radius.Publisher PDFPeer reviewe

    Public resources for chemical probes: the journey so far and the road ahead.

    Get PDF
    High-quality small molecule chemical probes are extremely valuable for biological research and target validation. However, frequent use of flawed small-molecule inhibitors produces misleading results and diminishes the robustness of biomedical research. Several public resources are available to facilitate assessment and selection of better chemical probes for specific protein targets. Here, we review chemical probe resources, discuss their current strengths and limitations, and make recommendations for further improvements. Expert review resources provide in-depth analysis but currently cover only a limited portion of the liganded proteome. Computational resources encompass more proteins and are regularly updated, but have limitations in data availability and curation. We show how biomedical scientists may use these resources to choose the best available chemical probes for their research

    Heating by transverse waves in simulated coronal loops

    Get PDF
    K.K. was funded by GOA-2015-014 (KU Leuven). T.V.D was supported by the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven). P.A. acknowledges funding from the UK Science and Technology Facilities Council and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214).Context.  Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability,which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims.  We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods.  Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results.  We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism.PostprintPeer reviewe

    Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations

    Get PDF
    PA acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/1) and support from the International Space Science Institute, Bern, Switzerland to the International Teams on 'Implications for coronal heating and magnetic fields from coronal rain observations and modeling' (PI: P Antolin) and 'Observed Multi-Scale Variability of Coronal Loops as a Probe of Coronal Heating' (PIs: C Froment and P Antolin).The complex interaction of the magnetic field with matter is the key to some of the most puzzling observed phenomena at multiple scales across the Universe, from tokamak plasma confinement experiments in the laboratory to the filamentary structure of the interstellar medium. A major astrophysical puzzle is the phenomenon of coronal heating, upon which the most external layer of the solar atmosphere, the corona, is sustained at multi-million degree temperatures on average. However, the corona also conceals a cooling problem. Indeed, recent observations indicate that, even more mysteriously, like snowflakes in the oven, the corona hosts large amounts of cool material termed coronal rain, hundreds of times colder and denser, that constitute the seed of the famous prominences. Numerical simulations have shown that this cold material does not stem from the inefficiency of coronal heating mechanisms, but results from the specific spatio-temporal properties of these. As such, a large fraction of coronal loops, the basic constituents of the solar corona, are suspected to be in a state of thermal non-equilibrium (TNE), characterised by heating (evaporation) and cooling (condensation) cycles whose telltale observational signatures are long-period intensity pulsations in hot lines and thermal instability-driven coronal rain in cool lines, both now ubiquitously observed. In this paper, we review this yet largely unexplored strong connection between the observed properties of hot and cool material in TNE and instability and the underlying coronal heating mechanisms. Focus is set on the long-observed coronal rain, for which significant research already exists, contrary to the recently discovered long-period intensity pulsations. We further identify the outstanding open questions in what constitutes a new, rapidly growing field of solar physics.Publisher PDFPeer reviewe
    corecore