23 research outputs found

    Increased Production of the Soluble Tumor-Associated Antigens CA19-9, CA125, and CA15-3 in Rheumatoid Arthritis

    Full text link
    Some tumor-associated antigens (TAAs) are expressed on inflammatory cells. We previously detected carcinoembryonic antigen (CEA; CD66) in the rheumatoid (RA) synovium. The production of CEA, CA19-9, CA125, and CA15.3, may be increased in patients with RA, scleroderma, lupus, and SjÖgren's syndrome (SS). Some of these TAAs contain sialylated carbohydrate motifs and they are involved in tumor-associated cell adhesion and metastasis. We assessed levels of TAAs in the sera of RA patients and healthy subjects. Serum TAA levels were correlated with disease markers including serum rheumatoid factor (RF), C-reactive protein (CRP), and anti-CCP antibody levels, DAS28, age disease duration. TAAs including CEA, CA15-3, CA72-4, CA125, and CA19-9, and neuron-specific enolase (NSE) were assessed by immunoassay in the sera of 75 patients with RA and 50 age- and sex-matched healthy controls. Normal upper limits for these TAAs were 3.4 Μg/L, 25 kU/L, 6.9 kU/L, 35 kU/L, 34 kU/L, and 16.3 Μg/L, respectively. There were significantly more RA patients showing abnormally high levels of CA125 (10.8% versus 7.1%), CA19-9 (8.1% versus 0%), and CA15-3 (17.6% versus 14.3%) in comparison to controls ( P < 0.05). The mean absolute serum levels of CA125 (23.9 ± 1.8 versus 16.8 ± 2.2 kU/L) and CA19-9 (14.2 ± 1.2 versus 10.5 ± 1.6 kU/L) were also significantly higher in RA compared to controls ( P < 0.05). Among RA patients, serum CEA showed significant correlation with RF ( r = 0.270; P < 0.05). None of the assessed TAAs showed any correlation with CRP, anti-CCP, DAS28, age or disease duration. The concentration of some TAAs may be elevated in the sera of patients with established RA in comparison to healthy subjects. CEA, CA19-9, CA125, and CA15-3 contain carbohydrate motifs and thus they may be involved in synovitis-associated adhesive events. Furthermore, some TAAs, such as CEA, may also correlate with prognostic factors, such as serum RF levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73224/1/annals.1422.037.pd

    The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Membrane-CD14 (mCD14) is expressed on the surface of monocytes, macrophages and polymorphonuclear neutrophil leukocytes (PMN). mCD14 acts as a co-receptor along with Toll like receptor 4 (TLR 4) and MD-2 for the detection of lipopolysaccharide (LPS). However, studies using different sample preparation methods and anticoagulants have reported different levels of mCD14 on the surface of monocytes and neutrophils. In this study, the influence of various anticoagulants and processing methods on measurement of mCD14 on monocytes and neutrophils was examined.</p> <p>Results</p> <p>Whole blood samples were collected in vacutainer tubes containing either sodium heparin (HEPARIN), ethylenediaminetetraacetic acid (EDTA) or sodium citrate (CITRATE). mCD14 on neutrophils and monocytes in whole blood samples or isolated cells was measured by the method of flow cytometry using fluorescein isothiocyanate (FITC)-labeled monoclonal antibody. There was a significant difference (<it>p </it>< 0.05) in the mean channel fluorescence intensity (MFI) of mCD14 on neutrophils in whole blood samples anticoagulated with HEPARIN (MFI = 64.77) in comparison with those in whole blood samples anticoagulated with either EDTA (MFI = 38.25) or CITRATE (MFI = 43.7). The MFI of mCD14 on monocytes in whole blood samples anticoagulted with HEPARIN (MFI = 206.90) was significantly higher than the MFI in whole blood samples anticoagulated with EDTA (MFI = 149.37) but similar to that with CITRATE (MFI = 162.55). There was no significant difference in the percentage of whole blood neutrophils or monocytes expressing mCD14 irrespective of type of anticoagulant used. However, MFI of mCD14 on monocytes was about 3.2-folds (HEPARIN), 3.9-folds (EDTA) or 3.7 folds (CITRATE) higher than those on neutrophils. Furthermore, there was no significant difference in mCD14 levels between unprocessed whole blood monocytes and monocytes in peripheral blood mononuclear cell preparation. Conversely, a highly significant difference was observed in mCD14 between unprocessed whole blood neutrophils and isolated neutrophils (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>From these results, it is suggested that sodium heparin should be the preferred anticoagulant for use in the reliable quantification of the surface expression of mCD14. Furthermore, measurement of mCD14 is best carried out in whole blood samples, both for neutrophils and monocytes.</p

    Glucocorticosteroid dependent decrease in the activity of calcineurin in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus

    No full text
    OBJECTIVE—To compare the activity of calcineurin in the peripheral blood mononuclear cells (PBMC) of 32 patients with systemic lupus erythematosus (SLE) and 35 healthy controls.
METHODS—The activity of calcineurin was assayed in the supernatants of sonicated mononuclear cells.
RESULTS—There was no significant difference in the calcineurin activity of patients with SLE not taking glucocorticosteroids (GCS) compared with the healthy controls. On the other hand, the activity of calcineurin was reduced in patients with SLE taking GCS, correlating negatively with the dose of GCS. The stimulation of PBMC by phorbol ester and calcium ionophore decreased the calcineurin activity both in patients with SLE and in healthy controls. GCS could also reduce calcineurin activity in the mononuclear cells of healthy subjects in vitro.
CONCLUSIONS—In patients with SLE the decrease in the calcineurin activity of PBMC depended on the dose of GCS used for treatment, and it was not a disease specific alteration. The higher the dose of GCS, the greater the inhibition of calcineurin activity. The reduction of calcineurin activity is a new element in the immunosuppressive effects of GCS during the treatment of patients with SLE.


    Altered cytokine expression of peripheral blood lymphocytes in polymyositis and dermatomyositis

    Get PDF
    Objective: To investigate the intracellular and soluble cytokine levels and T cell subsets in peripheral blood of patients with active and inactive polymyositis and dermatomyositis. Methods: The frequencies of T and B lymphocytes, T helper (Th), and T cytotoxic (Tc) cells and of interferon γ (IFNγ), interleukin (IL)4, and IL10 expression of CD4+ or CD8+ cells were determined by flow cytometry. The concentrations of soluble cytokines were measured with commercial enzyme linked immunosorbent assays. Results: In active dermatomyositis there was a decreased percentage of T (CD3+) lymphocytes and Tc (CD8+) lymphocytes, decreased IFNγ expression of CD4+ and CD8+ cells, but an increase in B and IL4 producing CD4+ lymphocyte frequencies. These prominent changes disappeared in the inactive stage of the disease. In polymyositis no significant change in these lymphocyte subsets or in intracellular cytokine expression could be detected in either the active or the inactive form. The frequency of IL4+/IFNγ+ Th cells was calculated and a significantly increased Th2/Th1 frequency was found in active dermatomyositis, and a decreased frequency in inactive dermatomyositis, compared with the control population. Conclusions: There appears to be a difference between polymyositis and dermatomyositis in the level of peripheral blood lymphocytes and their intracellular cytokine content. These findings provide further evidence for a difference in the pathogenesis of polymyositis and dermatomyositis

    Reconfigurable microfluidic device with integrated antibody arrays for capture, multiplexed stimulation, and cytokine profiling of human monocytes

    No full text
    Monocytes represent a class of immune cells that play a key role in the innate and adaptive immune response against infections. One mechanism employed by monocytes for sensing foreign antigens is via toll-like receptors (TLRs)—transmembrane proteins that distinguish classes of foreign pathogens, for example, bacteria (TLR4, 5, and 9) vs. fungi (TLR2) vs. viruses (TLR3, 7, and 8). Binding of antigens activates a signaling cascade through TLR receptors that culminate in secretion of inflammatory cytokines. Detection of these cytokines can provide valuable clinical data for drug developers and disease investigations, but this usually requires a large sample volume and can be technically inefficient with traditional techniques such as flow cytometry, enzyme-linked immunosorbent assay, or luminex. This paper describes an approach whereby antibody arrays for capturing cells and secreted cytokines are encapsulated within a microfluidic device that can be reconfigured to operate in serial or parallel mode. In serial mode, the device represents one long channel that may be perfused with a small volume of minimally processed blood. Once monocytes are captured onto antibody spots imprinted into the floor of the device, the straight channel is reconfigured to form nine individually perfusable chambers. To prove this concept, the microfluidic platform was used to capture monocytes from minimally processed human blood in serial mode and then to stimulate monocytes with different TLR agonists in parallel mode. Three cytokines, tumor necrosis factor-α, interleukin (IL)-6, and IL-10, were detected using anti-cytokine antibody arrays integrated into each of the six chambers. We foresee further use of this device in applications such as pediatric immunology or drug/vaccine testing where it is important to balance small sample volume with the need for high information content
    corecore