6,961 research outputs found

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    On Approximating Restricted Cycle Covers

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to settling the complexity and approximability of computing L-cycle covers. On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard. Most of our hardness results hold even if the edge weights are restricted to zero and one. On the other hand, we show that the problem of computing L-cycle covers of maximum weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in the case of directed graphs. This holds for arbitrary sets L.Comment: To appear in SIAM Journal on Computing. Minor change

    Fast algorithms for min independent dominating set

    Full text link
    We first devise a branching algorithm that computes a minimum independent dominating set on any graph with running time O*(2^0.424n) and polynomial space. This improves the O*(2^0.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG'06). We then show that, for every r>3, it is possible to compute an r-((r-1)/r)log_2(r)-approximate solution for min independent dominating set within time O*(2^(nlog_2(r)/r))

    Tropical Dominating Sets in Vertex-Coloured Graphs

    Full text link
    Given a vertex-coloured graph, a dominating set is said to be tropical if every colour of the graph appears at least once in the set. Here, we study minimum tropical dominating sets from structural and algorithmic points of view. First, we prove that the tropical dominating set problem is NP-complete even when restricted to a simple path. Then, we establish upper bounds related to various parameters of the graph such as minimum degree and number of edges. We also give upper bounds for random graphs. Last, we give approximability and inapproximability results for general and restricted classes of graphs, and establish a FPT algorithm for interval graphs.Comment: 19 pages, 4 figure

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Approximating Clustering of Fingerprint Vectors with Missing Values

    Full text link
    The problem of clustering fingerprint vectors is an interesting problem in Computational Biology that has been proposed in (Figureroa et al. 2004). In this paper we show some improvements in closing the gaps between the known lower bounds and upper bounds on the approximability of some variants of the biological problem. Namely we are able to prove that the problem is APX-hard even when each fingerprint contains only two unknown position. Moreover we have studied some variants of the orginal problem, and we give two 2-approximation algorithm for the IECMV and OECMV problems when the number of unknown entries for each vector is at most a constant.Comment: 13 pages, 4 figure

    Parameterized Complexity of the k-anonymity Problem

    Full text link
    The problem of publishing personal data without giving up privacy is becoming increasingly important. An interesting formalization that has been recently proposed is the kk-anonymity. This approach requires that the rows of a table are partitioned in clusters of size at least kk and that all the rows in a cluster become the same tuple, after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is known to be APX-hard even when the records values are over a binary alphabet and k=3k=3, and when the records have length at most 8 and k=4k=4 . In this paper we study how the complexity of the problem is influenced by different parameters. In this paper we follow this direction of research, first showing that the problem is W[1]-hard when parameterized by the size of the solution (and the value kk). Then we exhibit a fixed parameter algorithm, when the problem is parameterized by the size of the alphabet and the number of columns. Finally, we investigate the computational (and approximation) complexity of the kk-anonymity problem, when restricting the instance to records having length bounded by 3 and k=3k=3. We show that such a restriction is APX-hard.Comment: 22 pages, 2 figure

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    The Kr2Det project: Search for mass-3 state contribution |U_{e3}|^2 to the electron neutrino using a one reactor - two detector oscillation experiment at Krasnoyarsk underground site

    Get PDF
    The main physical goal of the project is to search with reactor antineutrinos for small mixing angle oscillations in the atmospheric mass parameter region around {\Delta}m^{2}_{atm} ~ 2.5 10^{-3} eV^2 in order to find the element U_{e3} of the neutrino mixing matrix or to set a new more stringent constraint (U_{e3} is the contribution of mass-3 state to the electron neutrino flavor state). To achieve this we propose a "one reactor - two detector" experiment: two identical antineutrino spectrometers with \sim50 ton liquid scintillator targets located at ~100 m and ~1000 m from the Krasnoyarsk underground reactor (~600 mwe). In no-oscillation case ratio of measured positron spectra of the \bar{{\nu}_e} + p \to e^{+} + n reaction is energy independent. Deviation from a constant value of this ratio is the oscillation signature. In this scheme results do not depend on the exact knowledge of the reactor power, nu_e spectra, burn up effects, target volumes and, which is important, the backgrounds can periodically be measured during reactor OFF periods. In this letter we present the Krasnoyarsk reactor site, give a schematic description of the detectors, calculate the neutrino detection rates and estimate the backgrounds. We also outline the detector monitoring and calibration procedures, which are of a key importance. We hope that systematic uncertainties will not accede 0.5% and the sensitivity U^{2}_{e3} ~4 10^{-3} (at {\Delta}m^{2} = 2.5 10^{-3} eV^2) can be achieved.Comment: Latex 2e, 9 pages and 5 ps figure

    Constant-degree graph expansions that preserve the treewidth

    Full text link
    Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree reduction can be performed through a sequence of splittings of vertices, resulting in an _expansion_ of the original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not performed carefully. In this context we address the following natural question: is it possible to reduce the maximum degree to a constant without substantially increasing the treewidth? Our work answers the above question affirmatively. We prove that any simple undirected graph G=(V, E) admits an expansion G'=(V', E') with the maximum degree <= 3 and treewidth(G') <= treewidth(G)+1. Furthermore, such an expansion will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed efficiently from a tree-decomposition of G. We also construct a family of examples for which the increase by 1 in treewidth cannot be avoided.Comment: 12 pages, 6 figures, the main result used by quant-ph/051107
    corecore