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ON APPROXIMATING RESTRICTED CYCLE COVERS∗

BODO MANTHEY†

Abstract. A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one
cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight
of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close
to settling the complexity and approximability of computing L-cycle covers. On the one hand, we
show that, for almost all L, computing L-cycle covers of maximum weight in directed and undirected
graphs is APX-hard. Most of our hardness results hold even if the edge weights are restricted to zero
and one. On the other hand, we show that the problem of computing L-cycle covers of maximum
weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in
the case of directed graphs. This holds for arbitrary sets L.
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1. Introduction. A cycle cover of a graph is a spanning subgraph that consists
solely of cycles such that every vertex is part of exactly one cycle. Cycle covers play an
important role in the design of approximation algorithms for the traveling salesman
problem [4, 6, 7, 10, 11, 12, 13, 23], the shortest common superstring problem [9, 28],
and vehicle routing problems [19].

In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle
covers of maximum weight can be computed efficiently. This is exploited in the
aforementioned approximation algorithms, which usually start by computing an initial
cycle cover and then join cycles to obtain a Hamiltonian cycle. This technique is called
subtour patching [16].

Short cycles in a cycle cover limit the approximation ratios achieved by such al-
gorithms. In general, the longer the cycles in the initial cover, the better the approx-
imation ratio. Thus, we are interested in computing cycle covers that do not contain
short cycles. Moreover, there are approximation algorithms that perform particularly
well if the cycle covers computed do not contain cycles of odd length [6]. Finally, some
vehicle routing problems [19] require covering vertices with cycles of bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths are
ruled out a priori: For L ⊆ N, an L-cycle cover is a cycle cover in which the length of
each cycle is in L. To fathom the possibility of designing approximation algorithms
based on computing cycle covers, we aim to characterize the sets L for which L-cycle
covers of maximum weight can be computed, or at least well approximated, efficiently.
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182 BODO MANTHEY

Beyond being a basic tool for approximation algorithms, cycle covers are inter-
esting in their own right. Matching theory and graph factorization are important
topics in graph theory. The classical matching problem is the problem of find-
ing one-factors, i.e., spanning subgraphs each vertex of which is incident to ex-
actly one edge. Cycle covers of undirected graphs are also known as two-factors
because every vertex is incident to exactly two edges. A considerable amount of
research has been done on structural properties of graph factors and on the com-
plexity of finding graph factors (cf. Lovász and Plummer [24] and Schrijver [27]).
In particular, the complexity of finding restricted two-factors, i.e., L-cycle covers
in undirected graphs, has been investigated, and Hell et al. [22] showed that find-
ing L-cycle covers in undirected graphs is NP-hard for almost all L. However, al-
most nothing is known so far about the complexity of finding directed
L-cycle covers.

1.1. Preliminaries. Let G = (V,E) be a graph with vertex set V and edge set
E. If G is undirected, then a cycle cover of G is a subset C ⊆ E of the edges of G
such that all vertices in V are incident to exactly two edges in C. If G is a directed
graph, then a cycle cover of G is a subset C ⊆ E such that all vertices are incident
to exactly one incoming and one outgoing edge in C. Thus, the graph (V,C) consists
solely of vertex-disjoint cycles. The length of a cycle is the number of edges of which
it consists. Since we do not allow self-loops or multiple edges, the shortest cycles of
undirected and directed graphs are of length three and two, respectively.

We call a cycle of length λ a λ-cycle for short. Cycles of even or odd length will
simply be called even or odd cycles, respectively.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in L ⊆ U = {3, 4, 5, . . . }. An L-cycle cover of a directed graph is
analogously defined except that L ⊆ D = {2, 3, 4, . . . }. A k-cycle cover is a {k, k +
1, . . . }-cycle cover. In the following, let L = U \L in the case of undirected graphs and
L = D \L in the case of directed graphs (whether we consider undirected or directed
cycle covers will be clear from the context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the edges
of G is w(C) =

∑
e∈C w(e). In particular, this defines the weight of a cycle cover since

we view cycle covers as sets of edges. Let U ⊆ V be any subset of the vertices of G.
The internal edges of U are all edges of G that have both vertices in U . We denote
by wU (C) the sum of the weights of all internal edges of U that are also contained in
C. The external edges at U are all edges of G with exactly one vertex in U .

For L ⊆ U , L-UCC is the decision problem whether an undirected graph contains
an L-cycle cover as a spanning subgraph.

Max-L-UCC(0,1) is the following optimization problem: Given an undirected
complete graph with edge weights zero and one, find an L-cycle cover of maximum
weight. We can also consider the graph as being not complete and without edge
weights. Then we try to find an L-cycle cover with a minimum number of “nonedges”
(nonedges correspond to weight zero edges, edges to weight one edges); i.e., the L-cycle
cover should contain as many edges as possible. Thus, Max-L-UCC(0,1) generalizes
L-UCC.

Max-L-UCC is the problem of finding L-cycle covers of maximum weight in graphs
with arbitrary nonnegative edge weights.

For k ∈ U , k-UCC, Max-k-UCC(0,1), and Max-k-UCC are defined like L-UCC,
Max-L-UCC(0,1), and Max-L-UCC except that k-cycle covers rather than L-cycle
covers are sought.
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ON APPROXIMATING RESTRICTED CYCLE COVERS 183

The problems L-DCC, Max-L-DCC(0,1), and Max-L-DCC as well as k-DCC,
Max-k-DCC(0,1), and Max-k-DCC are defined for directed graphs like their undi-
rected counterparts except that L ⊆ D and k ∈ D.

An instance of Min-Vertex-Cover(λ)is an undirected λ-regular graph H = (X,F );
i.e., every vertex in X is incident to exactly λ edges. A vertex cover of H is a subset
X̃ ⊆ X such that at least one vertex of every edge in F is in X̃. The aim is to
find a subset X̃ ⊆ X of minimum cardinality. Min-Vertex-Cover(λ) is APX-complete
for λ ≥ 3 as follows from results by Alimonti and Kann [2] as well as Chleb́ik and
Chleb́iková [14].

An instance of λ-XC (exact cover by λ-sets) is a tuple (X,F ), where X is a finite
set and F is a collection of subsets of X, each of cardinality λ. The question is whether
there exists a subcollection F̃ ⊆ F such that for every x ∈ X there is a unique a ∈ F̃
with x ∈ a. For λ ≥ 3, λ-XC is NP-complete [15, Problem SP2].

Let Π be an optimization problem, and let I be its set of instances. For an
instance X ∈ I, let opt(X) denote the weight of an optimum solution. We say
that Π can be approximated with an approximation ratio of α ≥ 1 if there exists a
polynomial-time algorithm that, for every instance X ∈ I, computes a solution Y of
X whose weight w(Y,X) is at most a factor of α away from opt(X). This means that
w(Y,X) ≤ α · opt(X) if Π is a minimization problem and w(Y,X) ≥ opt(X)/α if Π
is a maximization problem [3, Definition 3.6].

1.2. Previous results. Max-U-UCC, and thus U-UCC and Max-U-UCC(0,1),
can be solved in polynomial time via Tutte’s reduction to the classical perfect matching
problem [24, section 10.1]. Hartvigsen presented a polynomial-time algorithm that
can be used to decide 4-UCC in polynomial time [17]. Furthermore, it can be adapted
to solve Max-4-UCC(0,1) as well.

Max-k-UCC admits a simple factor 3/2 approximation for all k: Compute a
maximum weight cycle cover, break the lightest edge of each cycle, and join the
paths thus obtained to a Hamiltonian cycle. Unfortunately, this algorithm cannot be
generalized to work for Max-L-UCC for general L. For the problem of computing k-
cycle covers of minimum weight in graphs with edge weights one and two, there exists
a factor 7/6 approximation algorithm for all k [8]. Hassin and Rubinstein [20, 21]
devised a randomized approximation algorithm for Max-{3}-UCC that achieves an
approximation ratio of 83/43 + ε.

Hell et al. [22] proved that L-UCC is NP-hard for L �⊆ {3, 4}. For k ≥ 7, Max-
k-UCC(0,1) and Max-k-UCC are APX-complete [5]. Vornberger showed that Max-5-
UCC is NP-hard [29].

The directed cycle cover problems D-DCC, Max-D-DCC(0,1), and Max-D-DCC
can be solved in polynomial time by reduction to the maximum weight perfect match-
ing problem in bipartite graphs [1, Chapter 12]. But already 3-DCC is NP-com-
plete [15]. Max-k-DCC(0,1) and Max-k-DCC are APX-complete for all k ≥ 3 [5].

Similar to the factor 3/2 approximation algorithm for undirected cycle covers,
Max-k-DCC has a simple factor 2 approximation algorithm for all k: Compute a
maximum weight cycle cover, break the lightest edge of every cycle, and join the
cycles to obtain a Hamiltonian cycle. Again, this algorithm cannot be generalized
to work for arbitrary L. There is a factor 4/3 approximation algorithm for Max-3-
DCC [7] and a factor 3/2 approximation algorithm for Max-k-DCC(0,1) for k ≥ 3 [5].

The complexity of finding L-cycle covers in undirected graphs seems to be well
understood. However, hardly anything is known about the complexity of L-cycle
covers in directed graphs and about the approximability of L-cycle covers in both
undirected and directed graphs.
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︸ ︷︷ ︸
Λ−3 vertices

v

u

(a) L-clamp.

︸ ︷︷ ︸
Λ−3 vertices

x

y

z

(b) L-gadget.

Fig. 1. An L-clamp and an L-gadget for a set L with max(L) = Λ.

1.3. Our results. We prove that Max-L-UCC(0,1) is APX-hard for all L with
L �⊆ {3, 4} (section 2.2) and that Max-L-UCC is APX-hard if L �⊆ {3} (section 2.3).
The hardness results for Max-L-UCC hold even if we allow only the edge weights zero,
one, and two.

We show a dichotomy for directed graphs: For all L with L �= {2} and L �= D, L-
DCC is NP-hard and Max-L-DCC(0,1) and Max-L-DCC are APX-hard (section 2.5),
while all three problems are solvable in polynomial time if L = {2} or L = D.

The hardness results for Max-L-UCC(0,1) and Max-L-DCC(0,1) carry over to
the problem of computing L-cycle covers of minimum weight in graphs restricted to
edge weights one and two. The hardness results for Max-L-UCC for L = {3, 4} and
L = {4} carry over to the problem of computing L-cycle covers of minimum weight
where the edge weights are required to fulfill the triangle inequality.

To show the hardness of directed cycle covers, we show that certain kinds of
graphs, called L-clamps, exist for nonempty L ⊆ D if and only if L �= D (Theo-
rem 2.10). This graph-theoretical result might be of independent interest.

Finally, we devise approximation algorithms for Max-L-UCC and Max-L-DCC
that achieve ratios of 2 and 8/3, respectively (section 3). Both algorithms work for
all sets L.

2. The hardness of approximating L-cycle covers.

2.1. Clamps and gadgets. To begin the hardness proofs, we introduce clamps,
which were defined by Hell et al. [22]. Clamps are crucial for our hardness proof.

Let K = (U,E) be an undirected graph, and let u, v ∈ U be two vertices of
K, which we call the connectors of K. We denote by K−u and K−v the graphs
obtained from K by deleting u and v, respectively, and their incident edges. K−u−v

is obtained from K by deleting both u and v. For k ∈ N, Kk is the following graph:
Let y1, . . . , yk /∈ U be new vertices, and add edges {u, y1}, {yi, yi+1} for 1 ≤ i ≤ k−1,
and {yk, v}. For k = 0, we directly connect u to v.

Let L ⊆ U . The graph K is called an L-clamp if the following properties hold:
1. Both K−u and K−v contain an L-cycle cover.
2. Neither K nor K−u−v nor Kk for any k ∈ N contains an L-cycle cover.

Figure 1(a) shows an example of an L-clamp for a set L with Λ = max(L). Hell
et al. [22] proved the following result which we will exploit for our reduction.

Lemma 2.1 (Hell et al. [22]). Let L ⊆ U be nonempty. Then there exists an
L-clamp if and only if L �⊆ {3, 4}.

Let G be a graph with vertex set V and U ⊆ V . We say that the vertex set U is
an L-clamp with connectors u, v ∈ U in G if the subgraph of G induced by U is an
L-clamp and the only external edges of U are incident to u or v.

Let us fix some technical terms. For this purpose, let C be a subset of the edges
of G. (In particular, C can be a cycle cover of G.) For any V ′ ⊆ V , we say that V ′ is
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K2

v

u2

u3u1

K1 K3

(a) A triple L-clamp with
connectors u1, u2, u3. The
connectors of L-clamp Ki

are ui and v.

︸ ︷︷ ︸
τ vertices

ba

x

y

zt2

t3

u3
t1

u2

u1

v2

v3

v1

(b) An L-gadget with connectors x, y, z.
The connectors of triple L-clamps Ti are
ti, ui, vi. For legibility, the triple L-clamps
are not shown explicitly but only their con-
nectors.

Fig. 2. A triple L-clamp and an L-gadget.

isolated in C if there is no edge in C connecting V ′ to V \ V ′. If C is a cycle cover,
then this means that all cycles of C traverse either only nodes of V ′ or only nodes of
V \ V ′. We say that the L-clamp U absorbs u and expels v if U \ {v} is isolated in
C. This means that each cycle of C traverses either only vertices in (V \ U) ∪ {v} or
only vertices in U \ {v} (which includes u). Analogously, U absorbs v and expels u if
U \ {u} is isolated in C.

An L-clamp implements an exclusive-or of u and v: In every L-cycle cover, exactly
one of them is absorbed, and the other one is expelled. For our purpose of reducing
from Min-Vertex-Cover(λ), we need a one-out-of-three behavior. A graph K is called
an L-gadget with connectors x, y, z if the following property is fulfilled: Let G be an
arbitrary graph that contains K as a subgraph such that only x, y, and z are incident
to external edges. Then in all L-cycle covers C of G, exactly two of K’s connectors
are expelled while the third one is absorbed. To put it another way, either K−x−y or
K−x−z or K−y−z is isolated in C.

For finite sets L, we obtain an L-gadget, shown in Figure 1(b), by equipping the
L-clamp of Figure 1(a) with an additional connector.

For infinite sets L, we first build an intermediate subgraph. A triple L-clamp is
built from three L-clamps and has three connectors u1, u2, u3. Figure 2(a) shows the
construction. Triple L-clamps show a two-out-of-three behavior: Only one connector
will be expelled, and the other two will be absorbed. More precisely, one of the three
clamps has to absorb v. The other two absorb their connectors ui, which are also
connectors of the triple clamp.

Now we are prepared to build L-gadgets for infinite sets L. These graphs are
built from three triple L-clamps T1, T2, and T3, where Ti has connectors ui, vi, ti.
Figure 2(b) shows the L-gadget. Since L is infinite, there exists a τ ≥ 1, with
τ + 6 ∈ L. Let us argue why the L-gadget behaves as claimed. For this purpose, let
C be an arbitrary L-cycle cover of G, where G contains the L-gadget as a subgraph.
First, we observe that all τ + 2 vertices of the path connecting a to b must be on the
same cycle c in C. The only other vertices to which a is incident are t1, t2, and t3. By
symmetry, we assume that t1 lies also in c. Therefore, T1 absorbs u1 and v1. Hence,
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186 BODO MANTHEY

v2 and u3 are absorbed by T2 and T3, respectively, and c runs through x, u2, v3 back
to b to form a (τ + 6)-cycle. Thus, x is absorbed by the gadget. T2 expels u2 and
absorbs u3, while T3 expels v3 and absorbs v2. Hence, the gadget expels y and z as
claimed. The other two cases are symmetric.

To conclude this section about clamps, we transfer the notion of L-gadgets to com-
plete graphs with edge weights zero and one and prove some properties. In section 2.3,
we will generalize the notion of L-gadgets to graphs with arbitrary edge weights.

The transformation to graphs with edge weights zero and one is made in the
obvious way: Let G be an undirected complete graph with vertex set V and edge
weights zero and one. Let U ⊆ V . We say that U is an L-gadget with connectors
x, y, z ∈ U if the subgraph of G induced by U restricted to the edges of weight one is
an L-gadget with connectors x, y, z.

Let σ be the number of vertices of an L-gadget U with connectors x, y, and z.
Let C be a subset of the edges of G (in particular, C can be a cycle cover). We
call U healthy in C if U absorbs x, y, or z, expels the other two connectors, and
wU (C) = σ− 2. Since the edge weighted graph is complete, the L-cycle may traverse
L-gadgets arbitrarily. The following lemma shows that we cannot gain weight by not
traversing them healthily.

Lemma 2.2. Let G be an undirected graph with vertex set V and edge weights
zero and one, and let U ⊆ V be an L-gadget with connectors x, y, z. Let C be an
arbitrary L-cycle cover of G and |U | = σ. Then the following properties hold:

1. wU (C) ≤ σ − 1.
2. If there are 2α external edges at U in C, i.e., edges with exactly one end point

in U , then wU (C) ≤ σ − α.
3. Assume that U absorbs exactly one of x, y, or z. Then there exists an L-

cycle cover C̃ that differs from C only in the internal edges of U and has
wU (C̃) = σ − 2.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU (C) ≤ σ − 2.

Proof. If wU (C) = σ was true, then U would contain an L-cycle cover consisting
solely of weight one edges since |U | = σ. This would contradict U being an L-gadget.

The second claim follows immediately from |U | = σ and the fact that every vertex
is incident to exactly two edges in a cycle cover.

Assume without loss of generality that U absorbs x and expels y and z. Since
U is an L-gadget, U \ {y, z} contains an L-cycle cover consisting of σ − 1 weight one
edges, which proves the third claim.

The fourth claim remains to be proved. If there are more than two external edges
at U in C, we have at least four external edges and thus wU (C) ≤ σ − 2. So assume
that there are exactly two external edges at U in C incident to, say, x and y. We have
σ − 1 internal edges of U in C. If all of them had weight one, this would contradict
the property that in an unweighted L-gadget always U \{x, y}, U \{x, z}, or U \{y, z}
is isolated.

2.2. The reduction for undirected graphs. The notion of L-reductions was
introduced by Papadimitriou and Yannakakis [25] (cf. Ausiello et al. [3, Definition 8.4]).
L-reductions can be used to show the APX-hardness of optimization problems. We
present an L-reduction from Min-Vertex-Cover(λ) to show the inapproximability of
Max-L-UCC(0,1) for L �⊆ {3, 4}. The inapproximability of Max-L-UCC for L �⊆ {3}
and Max-L-DCC(0,1) for L �= {2} and L �= D will be shown in subsequent sections.
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Fa

x1
a

x2
a

x3
a

Fb Fc

x1
b x1

c

x2
c

x3
cx3

b

x2
b

y
2
cz2

c

z1
cz1

b

z2
b

z3
b z3

cz3
a

z2
a

z1
a

y1
a y

1
cy1

b

y2
a y2

b

y3
by3

a y
3
c

Fig. 3. The construction for x ∈ X incident to a = {x, y}, b = {x, y}, c = {x, y} ∈ F for
λ = 3. Fa, Fb, and Fc are gray. The three ellipses in the second and third rows build G2 and G3,
respectively. The cycles connecting the z-vertices are dotted. The junctions of x and their copies
are solid, except for {x1

c , x
1
a}, which has weight zero and is dashed.

Let L ⊆ U be nonempty with L �⊆ {3, 4}. Thus, L-gadgets exist, and we fix one
as in the previous section. Let λ = min(L). (This choice is arbitrary. We could
choose any number in L.) We will reduce Min-Vertex-Cover(λ) to Max-L-UCC(0,1).
Min-Vertex-Cover(λ) is APX-complete since λ ≥ 3.

Let H = (X,F ) be an instance of Min-Vertex-Cover(λ) with |X| = n vertices and
|F | = m = λn/2 edges. Our instance G for Max-L-UCC(0,1) consists of λ subgraphs
G1, . . . , Gλ, each containing σm vertices, where σ is the number of vertices of the
L-gadget. We start by describing G1. Then we state the differences between G1 and
G2, . . . , Gλ and say to which external edges of G1, . . . , Gλ weight one is assigned.

Let a = {x, y} ∈ F be any edge of H. We construct an L-gadget Fa for a that
has connectors x1

a, y
1
a, and z1

a. We call Fa an edge gadget.
Now let x ∈ X be any vertex of H, and let a1, . . . , aλ ∈ F be the λ edges that are

incident to x. We connect the vertices x1
a1
, . . . , x1

aλ
to form a path by assigning weight

one to the edges {x1
aη
, x1

aη+1
} for η ∈ {1, . . . , λ − 1}. Together with edge {x1

aλ
, x1

a1
},

these edges form a cycle of length λ ∈ L, but note that w({x1
aλ
, x1

a1
}) = 0. These λ

edges are called the junctions of x. The junctions at Fa for some a = {x, y} ∈ F are
the junctions of x and y that are incident to Fa. Overall, the graph G1 consists of
σm vertices since every edge gadget consists of σ vertices.

The graphs G2, . . . , Gλ are almost exact copies of G1. The graph Gξ (ξ ∈
{2, . . . , λ}) consists of L-gadgets with connectors xξ

a, yξa, and zξa for each edge a =
{x, y} ∈ F , just as above. The edge weights are also identical with the single excep-
tion that the edge {xξ

aλ
, xξ

a1
} also has weight one. Note that we use the term “edge

gadget” only for the subgraphs Fa of G1 defined above although almost the same
subgraphs occur in G2, . . . , Gλ as well. Similarly, the term “junction” refers only to
edges in G1.

Finally, we describe how to connect G1, . . . , Gλ with each other. For every edge
a ∈ F , there are λ vertices z1

a, . . . , z
λ
a . These are connected to form a cycle consisting

solely of weight one edges; i.e., we assign weight one to all edges {zξa, zξ+1
a } for ξ ∈

{1, . . . , λ− 1} and to {zλa , z1
a}. Figure 3 shows an example of the whole construction

from the viewpoint of a single vertex.
Edges with both vertices in the same gadget are called internal edges. Besides

junctions and internal edges, the third kind of edges are the z-edges of Fa for a ∈ F ,
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which are the two edges {z1
a, z

2
a} and {z1

a, z
λ
a}. The fourth kind of edges are illegal

edges, which are edges that are not junctions but connect any two vertices of two
different gadgets. The z-edges, however, are not illegal. Edges within G2, . . . , Gλ as
well as edges connecting Gξ to Gξ′ for ξ, ξ′ ≥ 2 have no special name.

We define the following terms for arbitrary subsets C of the edges of the graph G
thus constructed, which includes the case of C being a cycle cover. Let a = {x, y} ∈ F
be an arbitrary edge of H. We say that C legally connects Fa if the following properties
are fulfilled:

(i) C contains either two or four of the junctions at Fa and no illegal edges
incident to Fa.

(ii) If C contains exactly two junctions at Fa, then these belong to the same
vertex, and the two z-edges at Fa are contained in C.

(iii) If C contains four junctions at Fa, then C does not contain the z-edges at Fa.
We call C legal if C legally connects all gadgets. If C̃ is a legal L-cycle cover, then
for all x ∈ X either all junctions of x or no junction of x is in C̃. From a legal L-cycle
cover C̃, we obtain the subset X̃ = {x | the junctions of x are in C̃} ⊆ X. Since at
least two junctions at Fa are in C̃ for every a ∈ F , the set X̃ is a vertex cover of H.

The idea behind the reduction is as follows: Consider an edge a = {x, y} ∈ F .
We interpret x1

a being expelled to mean that x is in the vertex cover. (In this case,
the junctions of x are in the cycle cover.) Analogously, y is in the vertex cover if y1

a

is expelled. The vertex z1
a is absorbed only if both x and y are in the vertex cover. If

only one of x and y is in the vertex cover, z1
a forms a λ-cycle together with z2

a, . . . , z
λ
a .

We considered only G1 when defining the terms “legally connected” and “legal.”
This is because in G1 we lose weight one for putting x into the vertex cover since the
junction {x1

aλ
, x1

a1
} weighs zero. The other λ−1 copies of the construction are needed

only because z1
a must be part of some cycle if z1

a is not absorbed.
Lemma 2.3. Let X̃ be a vertex cover of size ñ of H. Then G contains an L-cycle

cover C̃, with w(C̃) = σλm− ñ.
Proof. We start by describing C̃ in G1. For every vertex x ∈ X̃, the cycle

consisting of all λ junctions is in C̃. Let a = {x, y} ∈ F be any edge. Then either x
or y or both are in X̃. If only x is in X̃, we let Fa absorb y1

a while z1
a is expelled. If

only y is in X̃, we let Fa absorb x1
a while z1

a is again expelled. If both x and y are in
X̃, then we let x1

a and y1
a be expelled while z1

a is absorbed.
We perform the same construction as for G1 for all copies G2, . . . , Gλ. If z1

a is
expelled, then z2

a, . . . , z
λ
a are expelled as well. We let them form a λ-cycle in C̃.

Clearly, C̃ is legal. Furthermore, C̃ is an L-cycle cover: Every cycle either has a
length of λ ∈ L or lies totally inside a single L-gadget. All L-gadgets are healthy in
C̃, and thus C̃ is an L-cycle cover.

All edges of C̃ within G2, . . . , Gλ have weight one. The only edges that connect
different copies Gξ and Gξ′ are edges {zξa, zξ+1

a } and {zλa , x1
a}, which have weight one

as well. Almost all edges used in G1 also have weight one; the only exception is one
junction of weight zero for each x ∈ X̃. Since |X̃| = ñ, there are ñ edges of weight zero
in C̃. The graph G contains σλm vertices, and thus C̃ contains σλm edges, σλm− ñ
of which have weight one.

Let C be an L-cycle cover of G, and let a ∈ F . We define WFa(C) as the sum
of the weights of all internal edges of Fa plus half the number of z-edges in C at Fa.
Analogously, WGξ

(C) is the number of weight one edges with both vertices in Gξ plus
half the number of weight one edges with exactly one vertex in Gξ.

Lemma 2.4. Let C be an L-cycle cover, and let j be the number of weight one
junctions in C. Then w(C) = j +

∑
a∈F WFa(C) +

∑λ
ξ=2 WGξ

(C).

D
ow

nl
oa

de
d 

08
/1

9/
19

 to
 1

30
.8

9.
47

.2
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON APPROXIMATING RESTRICTED CYCLE COVERS 189

Proof. Every edge with both vertices in the same Gξ is counted once. The only
edges of weight one between different Gξ are the edges {zξa, zξ+1

a } and {zλa , z1
a}. These

are counted with one-half in both WGξ
(C) and WGξ+1

(C) for 2 ≤ ξ ≤ λ−1 or one-half
in both WGξ

(C) and WFa(C) for ξ ∈ {2, λ}.
In a legal L-cycle cover C̃ as described in Lemma 2.3, we have WGξ

(C̃) = σm for
all ξ ∈ {2, . . . , λ} since every vertex in Gξ is incident only to edges of weight one in

C̃ by construction. Now we show that it is always best to traverse the gadgets legally
and to keep the gadgets healthy.

Lemma 2.5. Given an arbitrary L-cycle cover C, we can compute a legal L-cycle
cover C̃ with w(C̃) ≥ w(C) in polynomial time.

Proof. We proceed as follows to obtain C̃:
1. Let C ′ be C with all illegal edges removed.
2. For all x ∈ X in arbitrary order: If at least one junction of x is in C, then

put all junctions of x into C ′.
3. For all a = {x, y} ∈ F in arbitrary order: If neither the junctions of x nor

the junctions of y are in C ′, choose arbitrarily one vertex of a, say, x, and
add all junctions of x to C ′.

4. Rearrange C ′ within G1 such that all clamps are healthy in C ′.
5. Rearrange C ′ such that all G2, . . . , Gλ are traversed exactly like G1.
6. For all a ∈ F : If z1

a, . . . , z
ξ
a are not absorbed, let them form a λ-cycle. Call

the result C̃.
The running time of the algorithm is polynomial. Moreover, C̃ is a legal L-cycle cover
by construction. What remains is to prove w(C̃) ≥ w(C).

Let w(C) = j +
∑

a∈F WFa(C) +
∑λ

ξ=2 WGξ
(C) be the weight of C according

to Lemma 2.4; i.e., C contains j junctions of weight one. Analogously, let w(C̃) =

j̃+
∑

a∈F WFa(C̃)+
∑λ

ξ=2 WGξ
(C̃); i.e., j̃ is the number of junctions of weight one in C̃.

All illegal edges have weight zero, and we do not remove any junctions. We have
WGξ

(C̃) = σm for all ξ, which is maximal. Thus, no weight is lost in this way. What
remains is to consider the internal edges of the gadgets and the z-edges.

Let a = {x, y} be an arbitrary edge of H. If WFa(C) ≤ WFa(C̃), then nothing has
to be shown. Those gadgets Fa with WFa

(C) > WFa
(C̃) remain to be considered. We

have WFa(C̃) ≥ σ−2 and WFa(C) ≤ σ−1 according to Lemma 2.2. Thus, WFa(C) =
σ − 1 and WFa(C̃) = σ − 2 = WFa(C) − 1 for all a ∈ F with WFa(C) > WFa(C̃).
What remains to be proved is that, for all such gadgets, there is a junction of weight
one in C̃ that is not in C and can thus compensate for the loss of weight one in Fa.
This means that we have to show that j̃ is at least j plus the number of edges a with
WFa

(C) > WFa(C̃).
If WFa(C) = σ − 1, then according to Lemma 2.2(4) the junctions at Fa in C (if

there are any) belong to the same vertex. Since WFa(C̃) = σ−2, all four junctions at
Fa are in C̃. Thus, while executing the above algorithm, there is a moment at which
at least one of, say, y’s junctions at Fa is in C ′, and the junctions of x are added in
the next step. We say that a vertex x compensates Fa if

1. C̃ contains x’s junctions,
2. no junction of x at Fa is in C, and
3. at the moment at which x’s junctions are added, C ′ already contains at least

one junction of y at Fa.
Thus, every gadget Fa with WFa

(C̃) < WFa
(C) is compensated by some vertex x ∈ a.

It remains to be shown that the number of gadgets that are compensated by
some vertex is at most equal to the number of weight one junctions added to C ′.
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Let η ∈ {0, . . . , λ} be the number of junctions of x in C. If η = λ, then x does
not compensate any gadget. If η = 0, i.e., C does not contain any of x’s junctions,
then the junctions of x are added during step 3 of the algorithm because there is
some edge a ∈ F with x ∈ a such that there is no junction at all in C ′ at Fa before
adding x’s junctions. Thus, x does not compensate Fa. At most λ − 1 gadgets are
compensated by x, and λ− 1 junctions of x have weight one. The case that remains
is η ∈ {1, . . . , λ− 1}. Then λ− η junctions of x are added, and at least λ− η − 1 of
them have weight one. On the other hand, there are at least η + 1 gadgets Fa such
that at least one junction of x at Fa is already in C: Every junction is at two gadgets,
and thus η junctions are at η + 1 or more gadgets. Thus, at most λ − η − 1 gadgets
are compensated by x.

Finally, we prove the following counterpart to Lemma 2.3.
Lemma 2.6. Let C̃ be the L-cycle cover constructed as described in the proof of

Lemma 2.5, and let X̃ = {x | x’s junctions are in C̃} be the subset of X obtained
from C̃. Choose ñ such that w(C̃) = σλm− ñ. Then |X̃| = ñ.

Proof. The proof is similar to the proof of Lemma 2.3. We set the weight of all
junctions to one. With respect to the modified edge weights, the weight of C̃ is σλm.
Thus, ñ is the number of weight zero junctions in C̃, which is just |X̃|.

Now we are prepared to prove the main theorem of this section.
Theorem 2.7. For all L ⊆ U with L �⊆ {3, 4}, Max-L-UCC(0,1) is APX-hard.
Proof. We show that the reduction presented is an L-reduction. Then the result

follows from the APX-hardness of Min-Vertex-Cover(λ). Let opt(H) be the size of a
minimum vertex cover of H and opt(G) be the weight of a maximum weight L-cycle
cover of G. From Lemmas 2.3, 2.5, and 2.6, we obtain that opt(G) = σλm−opt(H) ≤
σλm. Since H is λ-regular, we have opt(H) ≥ n/2. Thus,

opt(G) ≤ σλm = σλ · (λn/2) ≤ (σλ2) · opt(H).

Let C be an arbitrary L-cycle cover of G, C̃ be a legal L-cycle cover obtained
from C as in Lemma 2.5, and X̃ ⊆ X be obtained from C̃. Then∣∣|X̃| − opt(H)

∣∣ =
∣∣w(C̃) − opt(G)

∣∣ ≤ ∣∣w(C) − opt(G)
∣∣,

which completes the proof.

2.3. Adaption of the reduction to Max-L-UCC. To prove the APX-hard-
ness of Max-L-UCC for L �⊆ {3}, all we have to do is to deal with L = {4} and
L = {3, 4}. For all other sets L, the inapproximability follows from Theorem 2.7. We
will adapt the reduction presented in the previous section.

To do this, we have to find an edge weighted analogue of an L-clamp. We do not
explicitly define the properties a weighted L-clamp has to fulfill. Instead, we just call
the graph shown in Figure 4(a) a weighted L-clamp for L = {3, 4} and L = {4}.

The basic idea is that all three edges of weight two of the weighted clamp have
to be traversed in a cycle cover. Since 4-cycles are forbidden, we have to take either
the two dotted edges or the two dashed edges. Otherwise, we would have to take an
edge of weight zero. Furthermore, if we take the dashed edges, we have to absorb v
and to expel u, and if we take the dotted edges, we have to absorb u and to expel v
(Figures 4(b) and 4(c)). Again, we would have to take edges of weight zero otherwise.

Using three weighted L-clamps Kx,Ky,Kz, we build an L-gadget as shown in Fig-
ure 5(a). Note that both t and t′ can serve as a connector for each of the clamps. This
weighted L-gadget has essentially the same properties as the L-gadgets of section 2.1,
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u

v
(a) The clamp.

u

v
(b) Absorbing v.

u

v
(c) Absorbing u.

x

p

(d) Illegal traversal of Kx.

Fig. 4. A weighted L-clamp for {4} ⊆ L ⊆ {3, 4} and how to traverse it. Bold edges have
weight two; solid, dashed, and dotted edges have weight one.

t t′

Kx

x

y

Ky

Kz

z

(a) The weighted L-gadget.

t t′x

Kx

y

Ky

Kz

z

(b) How to absorb x.

Fig. 5. A weighted L-gadget and how to use it.

which were stated as Lemma 2.2. The difference is that σ = 32 is no longer the number
of vertices, but the number of vertices plus the number of edges of weight two.

Lemma 2.8. Let G be an undirected graph with vertex set V and edge weights
zero and one, and let U ⊆ V be a weighted L-gadget with connectors x, y, z in G. Let
C be an arbitrary L-cycle cover of G. Then the following properties hold:

1. wU (C) ≤ 31.
2. If there are 2α external edges at U in C, then wU (C) ≤ 32 − α.
3. If U absorbs x, then there exists an L-cycle cover C̃ that differs from C only

in the internal edges of U and has wU (C̃) = 30. The same holds if U absorbs
y or z.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU (C) ≤ 30.

Proof. The only way to achieve wU (C) > 31 is wU (C) = 32, which requires that
we have 23 internal edges including all nine edges of weight two. Since 4-cycles are
forbidden, such an L-cycle cover does not exist.

If we have 2α external edges, then we have 23 − α internal edges. At most nine
of them are of weight two.

If U absorbs x, then we can achieve a weight of 30 by letting Ky and Kz absorb
t1 and t2, respectively (Figure 5(b)). (We can also connect Ky and Kz via t and t′ to
obtain a 14-cycle. The weight would be the same.) In the same way, we can achieve
weight 30 if U absorbs y or z.

The fourth claim remains to be proved. We have wU (C) ≤ 31 and 22 internal
edges. If wU (C) > 30, then wU (C) = 31, and C contains all nine edges of weight two
and no internal edge of weight zero of U . By symmetry, it suffices to consider the case
that x is incident to one external edge. Figure 4(d) shows which edges are mandatory
in order to keep all three edges of weight two. Since the cycle that contains x must
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x1
u v

(a) A {2}-clamp.

x2 x3 xΛ−2︸ ︷︷ ︸
Λ−3 vertices

xΛ−1x1

u

v

(b) An L-clamp for finite sets L
with max(L) = Λ ≥ 3.

x1 x3

x2

u

v

(c) A {2}-clamp.

︸ ︷︷ ︸
Λ − 3 vertices

u v
x3x2 xΛ−2

x1

xΛ−1

y

z

(d) An L-clamp for Λ �∈ L and Λ + 2 ∈ L
with Λ ≥ 3.

︸ ︷︷ ︸
�Λ/2� − 2 vertices

	Λ/2
 − 2 vertices︷ ︸︸ ︷
x	Λ/2
+1

x	Λ/2
x2x1

xΛ

u v

(e) An L-clamp for Λ,Λ + 2 �∈ L, and Λ + 1 ∈ L with
Λ ≥ 4.

Fig. 6. Directed L-clamps. The connectors are u and v; the internal vertices are x1, x2, . . .
and y, z.

be continued at p, vertex p is incident to an edge of weight zero in C, which proves
the claim.

Given these properties, we can plug the L-gadget into the reduction described
in the previous section to obtain the APX-hardness of Max-L-UCC for L = {4} and
L = {3, 4}. Together with Theorem 2.7, we obtain the following result.

Theorem 2.9. Max-L-UCC is APX-hard for all L with L �⊆ {3} even if the edge
weights are restricted to be zero, one, or two.

2.4. Clamps in directed graphs. The aim of this section is to prove a coun-
terpart to Lemma 2.1 (for the existence of L-clamps) for directed graphs. Let K =
(V,E) be a directed graph and u, v ∈ V . Again, K−u, K−v, and K−u−v denote
the graphs obtained by deleting u, v, and both u and v, respectively. For k ∈
N, Kk

u denotes the following graph: Let y1, . . . , yk /∈ V be new vertices, and add
edges (u, y1), (y1, y2), . . . , (yk, v). For k = 0, we add the edge (u, v). The graph
Kk

v is similarly defined, except that we now start at v; i.e., we add the edges (v, y1),
(y1, y2), . . . , (yk, u). K0

v is K with the additional edge (v, u).
Now we can define clamps for directed graphs: Let L ⊆ D. A directed graph

K = (V,E) with u, v ∈ V is a directed L-clamp with connectors u and v if the
following properties hold:

(i) Both K−u and K−v contain an L-cycle cover.
(ii) Neither K, K−u−v, K

k
u , nor Kk

v for any k ∈ N contains an L-cycle cover.
Let us now prove that directed L-clamps exist for almost all L.
Theorem 2.10. Let L ⊆ D be nonempty. Then there exists a directed L-clamp

if and only if L �= D.
Proof. We first prove that directed L-clamps exist for all nonempty sets L ⊆ D

with L �= D. We start by considering finite L. If L is finite, max(L) = Λ exists. For
L = {2}, the graph shown in Figure 6(a) is a directed L-clamp: Either u or v forms
a 2-cycle with x1, and there are no other possibilities. Otherwise, we have Λ ≥ 3.
Figure 6(b) shows a directed L-clamp for this case, which is a directed variant of the
undirected clamp shown in Figure 1(a).
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Now we consider finite L. Figure 6(c) shows an L-clamp for L = {2}: x1, x2, and
x3 must be on the same path since length two is forbidden. This cycle must include
u or v but cannot include both of them.

Otherwise, max(L) = Λ ≥ 3, Λ + 2 ∈ L, and the graph shown in Figure 6(d) is
an L-clamp: The vertices x1, . . . , xΛ−1 must all be on the same cycle. Thus, either
(y, x1) or (z, x1) is in the cycle cover. By symmetry, it suffices to consider the first
case. Since Λ /∈ L, the edge (xΛ−1, y) cannot be in the cycle cover. Thus, (v, y),
(xΛ−1, z), and hence (z, v) are in the cycle cover.

The case that remains to be considered is that both L and L are infinite. We
distinguish two subcases. First, there exists a Λ ≥ 4 with Λ,Λ+2 /∈ L and Λ+1 ∈ L.
In this case, the graph shown in Figure 6(e) is an L-clamp: x1, . . . , xΛ must be on the
same cycle. Since the lengths Λ and Λ + 2 are not allowed, either v or u is expelled
and the other vertex is absorbed.

Second, if no Λ exists with Λ,Λ+2 /∈ L and Λ+1 ∈ L (but L and L are infinite),
then there exists a Λ ≥ 3 with Λ /∈ L and Λ+2 ∈ L, and we can use the graph already
used for finite L (Figure 6(d)) as a directed L-clamp.

Lemma 2.11 below shows that D-clamps do not exist, which completes the
proof.

Lemma 2.11. Let G = (V,E) be a directed graph, and let u, v ∈ V . If G−u and
G−v both contain a cycle cover, then

(i) both G and G−u−v contain cycle covers or
(ii) all Gk

u and Gk
v for k ∈ N contain cycle covers.

Proof. Let E−u and E−v be the sets of edges of the cycle covers of G−u and
G−v, respectively. We construct two sequences of edges P = (e1, e2, . . . ) and P ′ =
(e′1, e

′
2, . . . ). These sequences can be viewed as augmenting paths, and we use them

to construct cycle covers of G−u−v and G or Gk
u and Gk

v . The sequence P is given
uniquely by traversing edges of E−v forwards and edges of E−u backwards:

(i) e1 = (u, x1) is the unique outgoing edge of u = x0 in E−v.
(ii) If ei = (xi−1, xi) ∈ E−v, i.e., if i is odd, then ei+1 = (xi+1, xi) ∈ E−u is the

unique incoming edge of xi in E−u.
(iii) If ei = (xi, xi−1) ∈ E−u, i.e., if i is even, then ei+1 = (xi, xi+1) ∈ E−v is the

unique outgoing edge of xi in E−v.
(iv) If in any of the above steps no extension of P is possible, then stop.
Let P = (e1, . . . , e�). We observe two properties of the sequence P .
Lemma 2.12. 1. No edge appears more than once in P .
2. If 
 is odd, i.e., e� ∈ E−v, then e� = (x�−1, u). If 
 is even, i.e., e� ∈ E−u,

then e� = (v, x�−1).
Proof. Assume the contrary of the first claim, and let ei = ej (i �= j) be an edge

that appears at least twice in P such that i is minimal. If i = 1, then ej = (u, x1) ∈
E−v. This would imply that ej−1 = (u, xj−2) ∈ E−u, a contradiction. If i > 1,
then assume ei = (xi−1, xi) ∈ E−v without loss of generality. Since exactly one edge
leaves xi−1 in E−u, the edge ei−1 = ej−1 is uniquely determined, which contradicts
the assumption that i be minimal.

Let us now prove the second claim. Without loss of generality, we assume that
the last edge e� belongs to E−v. Let e� = (x�−1, x�). The path P cannot be extended,
which implies that there does not exist an edge (x�+1, x�) ∈ E−u. Since E−u is a cycle
cover of G−u, this implies that x� = u and completes the proof.

We build the sequence P ′ analogously, except that we start with the edge e′1 =
(x′

1, v) ∈ E−u. Again, we traverse edges of E−v forwards and edges of E−u backwards.
Let P ′ = (e′1, . . . , e

′
�′).
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u v

(a) A graph G.

u v

(b) Cycle covers of G−v (dashed and
solid) and G−u (dotted and solid).

u

u

v

v
(c) P (top) and P ′ (bottom).
Dashed and dotted edges belong to
the cycle covers of G−v and G−u, re-
spectively.

u

u

v

v

(d) Cycle covers of G0
v (top) and G0

u
(bottom).

Fig. 7. Constructing cycle covers of G0
v and G0

u from the sequences P and P ′.

u v

(a) Another graph G.

u v

(b) Cycle covers of G−v (dashed
and solid) and G−u (dotted and
solid).

u

u v

v

(c) P (top) and P ′ (bottom).

u v

u v

(d) Cycle covers of G (top) and
G−u−v (bottom).

Fig. 8. Constructing cycle covers of G and G−u−v from the sequences P and P ′.

No edge appears in both P and P ′ as can be proved similarly to the first claim of
Lemma 2.12. Moreover, either P ends at u and P ′ ends at v or vice versa: We have
e� = (x�−1, u) if and only if e′�′ = (v, x�′−1), and we have e� = (v, x�−1) if and only if
e′�′ = (x�′−1, u). Let P−u ⊆ E−u denote the set of edges of E−u that are part of P .
The sets P−v, P

′
−u, P ′

−v are defined similarly.
Two examples are shown in Figures 7 and 8: Figures 7(a) and 7(b) show a graph

with its cycle covers, while Figure 7(c) depicts P and P ′, the former starting at u and
ending at v and the latter starting at v and ending at u. Figures 8(a), 8(b), and 8(c)
show another example graph; this time P starts and ends at u and P ′ starts and ends
at v.

Our aim is now to construct cycle covers of G and G−u−v or of Gk
u and Gk

v . We
distinguish two cases. Let us start with the case that P starts at u and ends at v and,
consequently, P ′ starts at v and ends at u. Then

E0
u = (E−v \ P−v) ∪ P−u ∪ {(u, v)}
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is a cycle cover of G0
u. To prove this, we have to show indegE0

u
(x) = outdegE0

u
(x) = 1

for all x ∈ V :
(i) We removed the outgoing edge of u in E−v, which is in P−v. The incoming

edge of u in E−v is left. P−u does not contain any edge incident to u, and
(u, v) is an outgoing edge of u. Thus, indegE0

u
(u) = outdegE0

u
(u) = 1.

(ii) There is no edge incident to v in E−v. P−u contains an outgoing edge of v,
and (u, v) is an incoming edge of v. Thus, indegE0

u
(v) = outdegE0

u
(v) = 1.

(iii) For all x ∈ V \ {u, v}, either both P−v and P−u contain an incoming edge
of x or neither of them does. Analogously, either both P−v and P−u contain
an outgoing edge of x or neither of them does. Thus, replacing P−v by P−u

changes neither indeg(x) nor outdeg(x).
By replacing the edge (u, v) by a path (u, y1), . . . , (yk, v), we obtain a cycle cover of
Gk

u for all k ∈ N. A cycle cover of G0
v is obtained similarly:

E0
v = (E−u \ P−u) ∪ P−v ∪ {(v, u)}.

As above, we get cycle covers of Gk
v by replacing (v, u) by a path (v, y1), . . . , (yk, u).

Figure 7(d) shows an example of how the new cycle covers are obtained.
The second case is that P starts and ends at u and P ′ starts and ends at v. Then

(E−v \ P−u) ∪ P−v and (E−u \ P ′
−v) ∪ P ′

−u

are cycle covers of G, and

(E−v \ P−v) ∪ P−u and (E−u \ P ′
−u) ∪ P ′

−v

are cycle covers of G−u−v. The proof is similar to the first case. Figure 8(d) shows
an example.

2.5. Intractability for directed graphs. From the hardness results in the
previous sections and the work by Hell et al. [22], we obtain the NP-hardness and
APX-hardness of L-DCC and Max-L-DCC(0,1), respectively, for all L with 2 /∈ L and
L �⊆ {2, 3, 4}: We use the same reduction as for undirected cycle covers and replace
every undirected edge {u, v} by a pair of directed edges (u, v) and (v, u). However,
this does not work if 2 ∈ L and also leaves open the cases when L � {2, 3, 4}. D-
DCC, Max-D-DCC(0,1), and Max-D-DCC can be solved in polynomial time, but the
case L = {2} is also easy: Replace two opposite edges (u, v) and (v, u) by an edge
{u, v} of weight w(u, v) + w(v, u), and compute a matching of maximum weight on
the undirected graph thus obtained.

We will settle the complexity of the directed cycle cover problems by showing that
L = {2} and L = D are the only tractable cases. For all other L, L-DCC is NP-hard,
and Max-L-DCC(0,1) and Max-L-DCC are APX-hard. Let us start by proving the
APX-hardness.

Theorem 2.13. Let L ⊆ D be a nonempty set. If L /∈ {{2},D}, then Max-L-
DCC(0,1) is APX-hard.

Proof. We adapt the proof presented in section 2.2. Since L �= {2}, there exists
a λ ∈ L, with λ ≥ 3. Thus, Min-Vertex-Cover(λ) is APX-complete. All we need
is such a λ and a directed L-clamp. Then we can reduce Min-Vertex-Cover(λ) to
Max-L-DCC(0,1).

We use the L-clamps to build L-gadgets, which again should have the property
that they absorb one of their connectors and expel the other two. In the case of L
being finite, the graph shown in Figure 9(a) is a directed L-gadget. In the case of
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︸ ︷︷ ︸
Λ−3 vertices

x

y

z

(a) L-gadget for finite L.

︸ ︷︷ ︸
τ vertices

ba

x

y

zt2

t3

u3
t1

u2

u1

v2

v3

v1

(b) L-gadget for infinite L with τ + 6 ∈ L. The triple
clamps are represented by their connectors ti, ui, vi.

Fig. 9. Directed L-gadgets with connectors x, y, z.

infinite L, we can build directed triple L-clamps exactly as for undirected graphs. By
using these, we can build directed L-gadgets, which are simply directed variants of
their undirected counterparts (Figure 9(b)).

The edge gadgets build the graph G1: Let x ∈ X be a vertex of H and a1, . . . , aλ ∈
F be the edges incident to x in H (in arbitrary order). Then we assign weight one to
the edges (x1

aξ
, x1

aξ+1
) for all ξ ∈ {1, . . . , λ− 1}. The edge (x1

aλ
, x1

a1
) has weight zero.

These λ edges are called the junctions of x.
Again, G2, . . . , Gλ are exact copies of G1 except that weight one is assigned also

to (xξ
aλ
, xξ

a1
) for all ξ ∈ {2, 3, . . . , λ}.

Again, we let the z-vertices form λ-cycles: For all edges a ∈ F , we assign weight
one to (zξa, z

ξ+1
a ) for ξ ∈ {1, 2, . . . , λ− 1} and to (zλa , z

1
a).

Weight zero is assigned to all edges that are not mentioned.
The remainder of the proof goes along the same lines as the APX-hardness proof

for undirected L-cycle covers.
Note that the NP-hardness of L-DCC for L /∈ {{2},D} does not follow directly

from the APX-hardness of Max-L-DCC(0,1): A famous counterexample is 2SAT, for
which it is APX-hard to maximize the number of simultaneously satisfied clauses [25],
although testing whether a 2CNF formula is satisfiable takes only linear time.

Theorem 2.14. Let L ⊆ D be a nonempty set. If L /∈ {{2},D}, then L-DCC is
NP-hard.

Proof. All we need is an L-clamp and some λ ∈ L, with λ ≥ 3. We present
a reduction from λ-XC (which is NP-complete since λ ≥ 3) that is similar to the
reduction of Hell et al. [22] used to prove the NP-hardness of L-UCC for L �⊆ {3, 4}.

Let (X,F ) be an instance of λ-XC. Note that we will construct a directed graph
G as an instance of L-DCC; i.e., G is neither complete nor edge-weighted. For each
x ∈ X, we have a vertex in G that we again call x. For a = {x1, . . . , xλ} ∈ F , we
construct a λ-cycle consisting of the vertices a1, . . . , aλ. Then we add λ L-clamps K

xη
a ,

with aη and xη as connectors for all η ∈ {1, . . . , λ}. See Figure 10 for an example.
What remains to be shown is that G contains an L-cycle cover if and only if F

is a “yes” instance of λ-XC. Assume first that there exists a subset F̃ ⊆ F such
that

⋃
a∈F̃ a = X and every element x ∈ X is contained in exactly one set of F̃ . We

construct an L-cycle cover of G in which all clamps are healthy: Let a = {x1, . . . , xλ} ∈
F . If a ∈ F̃ , then let K

xη
a expel aη and absorb xη for all η ∈ {1, . . . , λ}, and
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a3a2a1

x y z

Fig. 10. The construction for the NP-hardness of L-DCC from the viewpoint of a = {x, y, z} ∈
F . Each ellipse represents an L-clamp.

let a1, a2, . . . , aλ form a λ-cycle. If a /∈ F̃ , let K
xη
a expel xη and absorb aη for all

η ∈ {1, . . . , λ}. All connectors are absorbed by exactly one clamp or are covered by a
λ-cycle since F̃ is an exact cover.

Now we prove the reverse direction. Let C be an L-cycle cover of G. Then every
clamp of G is healthy in C; i.e., it absorbs one of its connectors and expels the other
one. Let a = {x1, . . . , xλ} ∈ F , and assume that K

xη
a expels aη. Since aη must be

part of a cycle in C, (aη−1, aη) and (aη, aη+1) must be in C. We obtain either that
all a1, . . . , aλ are absorbed by Kx1

a , . . . ,Kxλ
a or that all are expelled by Kx1

a , . . . ,Kxλ
a .

Now consider any x ∈ X, and let a1, a2, . . . , a� ∈ F be all of the sets that contain x.
All clamps Kx

a1
, . . . ,Kx

a�
are healthy, C is an L-cycle cover of G, and x is not incident

to any further edges. Hence, there must be a unique ai such that Kx
ai

absorbs x.
Thus,

F̃ =
{
a = {x1, . . . , xλ} ∈ F | Kxη

a absorbs xη for all η ∈ {1, . . . , λ}
}

is an exact cover of (X,F ).
If the language {1λ | λ ∈ L} is in NP, then L-DCC is also in NP and therefore

NP-complete if L /∈ {{2},D}: We can nondeterministically guess a cycle cover and
then check if λ ∈ L for every cycle length λ occurring in that cover. Conversely, if
{1λ | λ ∈ L} is not in NP, then L-DCC is not in NP either since there is a reduction
of {1λ | λ ∈ L} to L-DCC: On input x = 1λ, construct a graph G on λ vertices that
consists solely of a Hamiltonian cycle. Then x ∈ L if and only if G contains an L-cycle
cover.

3. Approximation algorithms. The goal of this section is to devise approx-
imation algorithms for Max-L-UCC and Max-L-DCC that work for arbitrary L.
The catch is that we have an uncountable number of problems Max-L-UCC and
Max-L-DCC, and for most L it is impossible to decide whether some cycle length is
in L or not.

Assume, for instance, that we have an algorithm that solves Max-L-UCC for some
set L that is not recursively enumerable. We enumerate all instances of Max-L-UCC
and run the algorithm on these instances. This yields an enumeration of a subset of
L. Since L is not recursively enumerable, there exist λ ∈ L such that the algorithm
never outputs λ-cycles. Now consider a graph with λ vertices where all edges have
weight zero except for a Hamiltonian cycle of weight one edges. Then the Hamiltonian
cycle is the unique optimum solution, but our algorithm does not output the λ-cycle,
contradicting the assumption that it solves Max-L-UCC.

One possibility to circumvent this problem would be to restrict ourselves to sets
L such that {1λ | λ ∈ L} is in P. Another possibility to cope with this problem is to
include the permitted cycle lengths in the input. However, while such restrictions are
necessary for finding optimum solutions, it turns out that they are unnecessary for
designing approximation algorithms.
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A necessary and sufficient condition for a complete graph with n vertices to have
an L-cycle cover is that there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L

for some k ∈ N with
∑k

i=1 λi = n. We call such an n L-admissible and define
〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily complicated, 〈L〉 always
allows efficient membership testing.

Lemma 3.1. For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.
Proof. Let L≤� = {n ∈ L | n ≤ 
} ⊆ L. Let gL ∈ N be the greatest common

divisor of all numbers in L. There exists an 
0 ∈ L such that gL is also the greatest
common divisor of L≤�0 .

If gL ∈ L, then 〈{gL}〉 = 〈L〉, and we are done. Thus, we assume that gL /∈ L.

There exist ξ1, . . . , ξk ∈ Z and λ1, . . . , λk ∈ L≤�0 for some k ∈ N with
∑k

i=1 ξiλi = gL.
Let ξ = min1≤i≤k ξi. We have ξ < 0 since gL /∈ L. Choose any λ ∈ L≤�0 , and let


 = −ξλ ·
∑k

i=1 λi. Let n ∈ 〈L〉 with n ≥ 
, let m = mod (n− 
, λ), and let s =
⌊
n−�
λ

⌋
.

We can write n as

n = λs + m + 
 = λs +
m

gL
·

k∑
i=1

ξiλi − λξ ·
k∑

i=1

λi = λs +

k∑
i=1

(mξi − λξ) · λi.

Since m < λ and ξi ≥ ξ < 0, we have (mξi −λξ) ≥ 0 for all i. Hence, 〈L≤�0〉 contains
all elements n ∈ 〈L〉, with n ≥ 
. Elements of 〈L〉 smaller than 
 are contained in
〈L≤�〉 ⊇ 〈L≤�0〉. Hence, 〈L≤�〉 = 〈L〉, and L′ = L≤� is the finite set for which we are
looking.

For every fixed L, we can not only test in time polynomial in n whether n is
L-admissible, but we can, provided that n ∈ 〈L〉, also find numbers λ1, . . . , λk ∈ L′

that add up to n, where L′ ⊆ L denotes a finite set with 〈L〉 = 〈L′〉. This can be
done via dynamic programming in time O(n · |L′|), which is O(n) for fixed L.

Although 〈L〉 = 〈L′〉, there are clearly graphs for which the weights of an optimal
L-cycle cover and an optimal L′-cycle cover differ: Let λ ∈ L \ L′, and consider a
λ-vertex graph where all edge weights are zero except for one Hamiltonian cycle of
weight one edges. However, this does not matter for our approximation algorithms.

The two approximation algorithms presented in sections 3.2 and 3.3 are based on
a decomposition technique for cycle covers presented in section 3.1.

3.1. Decomposing cycle covers. In this section, we present a decomposition
technique for cycle covers. The technique can be applied to cycle covers of undirected
graphs but also to directed cycle covers that do not contain 2-cycles.

A single is a single edge (or a path of length one) in a graph, while a double is
a path of length two. Our aim is to decompose a cycle cover C on n vertices into
roughly n/6 singles, n/6 doubles, and n/6 isolated vertices. If n is not divisible by
six, we replace n/6 by �n/6
 or �n/6�: If n = 6k + 
 for k, 
 ∈ N and 
 ≤ 5, then we
take k + α� singles and k + β� doubles, where α� and β� are given in Table 1. Thus,
we retain half of the edges of C. We aim to decompose the cycle covers such that at
least half of the weight of the cycle cover is preserved.

The reason why we decompose cycle covers into singles and doubles is the follow-
ing: We cannot decompose them into longer paths in general since this does not work
for {3}-cycle covers. If we restricted ourselves to decomposing the cycle covers into
singles only, then 3-cycles would limit the weight preserved: We would retain only
one-third of the edges of the 3-cycles and thus at most one-third of their weight in
general. Finally, if we restricted ourselves to doubles, then 5-cycles would limit the
weight we could obtain since we would retain only two of their five edges.
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Table 1

A cycle cover on n = 6k + � vertices will be decomposed into k + α� singles and k + β� doubles.

� 0 1 2 3 4 5

α� 0 1 1 0 0 1
β� 0 0 0 1 1 1

(a) A cycle cover. (b) A decomposition of the cycle cover.

Fig. 11. An example of a decomposition according to Lemma 3.2.

In our approximation algorithms, we exploit the following observation: If every
cycle cover on n vertices can be decomposed into α singles and β doubles, then, for
every L, every L-cycle cover on n vertices can be decomposed in the same way. This
implies that we can build cycle covers from such a decomposition: Given α singles
and β doubles, and n−2α−3β isolated vertices, we can join them to form an L-cycle
cover. (The only restriction is that n must be L-admissible.)

Let us now state the decomposition lemma.
Lemma 3.2. Let C = (V,E) be a cycle cover on n = 6k+ 
 vertices such that the

length of each cycle is at least three. Let w : E → N be an edge weight function.
Then there exists a decomposition D ⊆ E of C such that (V,D) consists of vertex-

disjoint k + α� singles, k + β� doubles, and n − 5k − 3β� − 2α� isolated vertices and
w(D) ≥ w(E)/2, where α� and β� are given in Table 1.

The decomposition can be done in polynomial time.
Figure 11 illustrates how a cycle cover is decomposed into singles and doubles.
Let us first prove some helpful lemmas.
Lemma 3.3. Let λ, α, β ∈ N, with α + 2β ≥ λ/2 and 2α + 3β ≤ λ. Then every

cycle c of length λ can be decomposed into α singles and β doubles such that the weight
of the decomposition is at least w(c)/2.

Proof. Every single involves two vertices of c, while every double involves three
vertices. Thus, 2α+ 3β ≤ λ is a necessary condition for c being decomposable into α
singles and β doubles. It is also a sufficient condition.

We assign an arbitrary orientation to c. Let e0, . . . , eλ−1 be the consecutive edges
of c, where e0 is chosen uniformly at random among the edges of c. We take α singles
e0, e2, . . . , e2α−2 and β doubles (e2α, e2α+1), (e2α+3, e2α+4), . . . , (e2α+3β−3, e2α+3β−2).
Since 2α + 3β ≤ λ, this is a feasible decomposition. The probability that any fixed
edge of c is included in the decomposition is α+2β

λ . Thus, the expected weight of the

decomposition is α+2β
λ · w(c) ≥ w(c)/2.

Lemma 3.4. Let λ ∈ N. Suppose that every cycle c of length λ can be decom-
posed into α singles and β doubles of weight at least w(c)/2. Then every cycle c′ of
length λ + 6 can be decomposed into α + 1 singles and β + 1 doubles of weight at
least w(c′)/2.
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Table 2

The induction basis. The columns α and β show the number of singles and doubles needed,
respectively. We denote by λ � (α, β) that a λ-cycle is decomposed into α singles and β doubles. If
there are two lines for a case, then the option that yields more weight is chosen.

Length � α β
3 3 0 1
4 4 0 1
5 5 1 1
6 0 1 1
7 1 2 1
8 2 2 1

(a) One cycle.

Lengths � α β Decomposition
3 + 3 0 1 1 3�(1,0) + 3�(0,1)
3 + 5 2 2 1 3�(1,0) + 5�(1,1)

or 3�(0,1) + 5�(2,0)
3 + 7 4 1 2 3�(1,0) + 7�(0,2)

or 3�(0,1) + 7�(1,1)
5 + 5 4 1 2 5�(0,1) + 5�(1,1)
5 + 7 0 2 2 5�(2,0) + 7�(0,2)

or 5�(1,1) + 7�(1,1)
7 + 7 2 3 2 7�(1,1) + 7�(2,1)

(b) Two odd cycles.

Table 3

Induction step.

Length � α β
4 0,3,4,5 0 1
4 1,2 2 0
6 all 1 1
8 0,1,2,5 2 1
8 3,4 0 2

(a) Removing an even cycle.

Lengths � α β Decomposition
3 + 3 all 1 1 3�(1,0) + 3�(0,1)
3 + 7 0,3,4,5 1 2 3�(1,0) + 7�(0,2)

or 3�(0,1) + 7�(1,1)
3 + 7 1,2 3 1 3�(1,0) + 7�(2,1)

or 3�(0,1) + 7�(3,0)
5 + 5 0,3,4,5 1 2 5�(0,1) + 5�(1,1)
5 + 5 1,2 3 1 5�(2,0) + 5�(1,1)
5 + 7 all 2 2 5�(2,0) + 7�(0,2)

or 5�(1,1) + 7�(1,1)
7 + 7 0,1,2,5 3 2 7�(1,1) + 7�(2,1)
7 + 7 3,4 1 3 7�(1,1) + 7�(0,2)

(b) Removing two odd cycles.

Proof. We have α+2β ≥ λ/2 and 2α+3β ≤ λ. Thus, α+1+2(β+1) ≥ (λ+6)/2
and 2(α + 1) + 3(β + 1) ≤ λ + 6. The lemma follows from Lemma 3.3.

Lemma 3.4 also holds if we consider more than one cycle: Assume that every
collection of k cycles of lengths λ1, . . . , λk can be decomposed into α singles and β
doubles such that the weight of the decomposition is at least half the weight of the
cycles. Then k cycles of lengths λ1+6, λ2, . . . , λk can be decomposed into α+1 singles
and β + 1 doubles such that also at least half of the weight of the cycles is preserved.
Due to Lemma 3.4, we can restrict ourselves to cycles of length at most eight in the
following. The reason for this is the following: If we know how to decompose cycles
of length λ, then we also know how to decompose cycles of length λ + 6, λ + 12, . . .
from Lemma 3.4.

We are now prepared to prove Lemma 3.2.
Proof of Lemma 3.2. We prove the lemma by induction on the number of cycles.

As the induction basis, we consider a cycle cover consisting of either a single cycle
or of two odd cycles. See Table 2. Due to Lemma 3.4, we can restrict ourselves
to considering cycles of length at most eight. Tables 3(a) and 3(b) show how to
decompose a single cycle and two odd cycles, respectively. We always perform the
decomposition such that the weight preserved is maximized. In particular, if there
are two odd cycles of different length, we have two options in how to decompose these
cycles, and we choose the one that yields the larger weight. Overall, we obtain a
decomposition with an appropriate number of singles and doubles that preserves at
least one half of the weight.
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Table 4

The complexity of computing L-cycle covers.

L-UCC Max-L-UCC(0,1) Max-L-UCC

L = ∅ in P in PO in PO

L = {3} in P in PO

L = {4}, {3, 4} APX-complete

L �⊆ {3, 4} NP-hard APX-hard APX-hard

(a) Undirected cycle covers.

L-DCC Max-L-DCC(0,1) Max-L-DCC

L = {2},D in P in PO in PO
L /∈ {{2},D} NP-hard APX-hard APX-hard

(b) Directed cycle covers.

As the induction hypothesis, we assume that the lemma holds if the number of
cycles is less than r. Assume that we have a cycle cover C consisting of r cycles.
Let n = 6k + 
 for the number of its vertices for k, 
 ∈ N and 
 ≤ 5. We remove
either an even cycle or two odd cycles. In the following, let C ′ be the new cycle cover
obtained by removing one or two cycles from C. A little more care is needed than in
the induction basis: Consider, for instance, the case of removing a 4-cycle. If 
 = 4,
then C has to be decomposed into k singles and k+1 doubles, while we have to take k
singles and k doubles from C ′. Thus, the 4-cycle has to be decomposed into a double.
But if 
 = 1, then we need k + 1 singles and k doubles from C and k − 1 singles and
k doubles from C ′. Thus, the 4-cycle has to be decomposed into two singles. Overall,
the 4-cycle has to be decomposed into a double if 
 ∈ {0, 3, 4, 5} and into two singles
if 
 ∈ {1, 2}. Similar case distinctions hold for all other cases. How to remove one
even or two odd cycles is shown in Tables 4(a) and 4(b), respectively.

To complete the proof, we have to deal with the cases of a 3- and a 5-cycle, which
are slightly more complicated and not covered by Table 4(b). We run into trouble
if, for instance, 
 = 3. In this case, we have to take two doubles. If the 5-cycle is
much heavier than the 3-cycle, then it is impossible to preserve half of the weight of
the two cycles. But we can avoid this problem: As long as there is an even cycle, we
decompose this one. After that, as long as there are at least three odd cycles, we can
choose two of them such that we do not have a pair of one (3 + 6ξ)-cycle and one
(5 + 6ξ′)-cycle for some ξ, ξ′ ∈ N. The only situation in which it can happen that we
cannot avoid decomposing a (3+6ξ)-cycle and a (5+6ξ′)-cycle is when there are only
two cycles left. In this case, we have 
 = 2, and we have treated this case already in
the induction basis.

If we consider directed graphs where 2-cycles can also occur, only one-third of
the weight can be preserved. This can be done by decomposing the cycle cover into
a matching of cardinality �n/3�. (Every λ-cycle can be decomposed into a matching
of size up to �λ/2
 ≥ �λ/3�. The bottleneck is 3-cycles, which yield only one edge.)

An obvious question is whether the decomposition lemma can be improved in
order to preserve more than half of the weight or more than one-third of the weight
if we additionally allow 2-cycles. Unfortunately, this is not the case.

A generic decomposition lemma states the following: For every n ∈ N, every
k-cycle cover (for k ∈ {2, 3}) on n vertices can be decomposed into α singles and β
doubles such that at least a fraction r of the weight of the cycle cover is preserved.
(As already mentioned, longer paths are impossible due to 3-cycles.) Lemma 3.2
instantiates this generic lemma with α ≈ n/6, β ≈ n/6, and r = 1/2. In case of the
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Input: undirected complete graph G = (V,E), |V | = n; edge weights w : E → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: compute a cycle cover C init in G of maximum weight
4: decompose C init into a set D ⊆ C init of edges according to Lemma 3.2
5: join the singles and doubles in D to obtain an L-cycle cover Capx

6: return Capx

Algorithm 1: A 2 approximation algorithm for Max-L-UCC.

presence of 2-cycles, we have sketched a decomposition with α ≈ n/3, β = 0, and
r = 1/3.

Lemma 3.5. No decomposition technique for 3-cycle covers can in general pre-
serve more than one-half of the weight of the 3-cycle covers.

Furthermore, no decomposition technique for 2-cycle covers can in general pre-
serve more than one-third of the weight of the 2-cycle covers.

Proof. We exploit the fact that the fraction of edges that are preserved in a
cycle cover decomposition is a lower bound for the fraction of the weight that can be
preserved.

Since, in particular, {3}-cycle covers have to be decomposed, we cannot decom-
pose the cycle cover into paths of length more than two. Now consider decomposing
a {4}-cycle cover. Since paths of length 3 are not allowed, we have to discard two
edges of every 4-cycle. Thus, at most two edges of every 4-cycle are preserved, which
proves the first part of the lemma.

The second part follows analogously by considering 3-cycles and observing that
paths of length two or more are not allowed.

Overall, Lemma 3.5 shows that every approximation algorithm for Max-L-UCC
or Max-L-DCC that works for arbitrary sets L and is purely decomposition-based
achieves approximation ratios of at best 2 or 3, respectively. We achieve an approx-
imation ratio of 8/3 < 3 for Max-L-DCC by paying special attention to 2-cycles
(section 3.3).

3.2. Undirected cycle covers. Our approximation algorithm for Max-L-UCC
(Algorithm 1) directly exploits Lemma 3.2.

Theorem 3.6. Algorithm 1 is a factor 2 approximation algorithm for Max-L-
UCC for all L ⊆ U . Its running time is O(n3).

Proof. If L is infinite, we replace L by a finite set L′ ⊆ L, with 〈L′〉 = 〈L〉
according to Lemma 3.1. Algorithm 1 returns ⊥ if and only if n /∈ 〈L〉. Otherwise, an
L-cycle cover Capx is returned. Let C� denote an L-cycle cover of maximum weight
of G. We have w(C�) ≤ w(C init) ≤ 2 ·w(D) ≤ 2 ·w(Capx). The first inequality holds
because L-cycle covers are special cases of cycle covers. The second inequality holds
due to the decomposition lemma (Lemma 3.2). The last inequality holds since no
weight is lost during the joining. Overall, the algorithm achieves an approximation
ratio of 2.

The running time of the algorithm is dominated by the time needed to compute
the initial cycle cover, which is O(n3) [1, Chapter 12].

3.3. Directed cycle covers. In the following, let Copt be an L-cycle cover of
maximum weight. Let wλ denote the weight of the λ-cycles in Copt; i.e., w(Copt) =∑

λ≥2 wλ.
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We distinguish three cases: First, 2 /∈ L; second, 2 ∈ L and 3 /∈ L; and third,
2, 3 ∈ L.

We use the decomposition lemma (Lemma 3.2) only if 2 /∈ L. In this case, the
weight of an optimal L-cycle cover is at most the weight of an optimal 3-cycle cover
Copt

3 . Thus, we proceed as follows: First, we compute a 4/3 approximation C init
3

for Max-3-DCC, which can be done by using the algorithm of Bläser, Ram, and
Sviridenko [7]. We have w(C init

3 ) ≥ 3
4 · w(Copt

3 ) ≥ 3
4 · w(Copt). Now we decompose

C init
3 into a collection D of singles and doubles according to Lemma 3.2. Finally, we

join the singles, doubles, and isolated vertices of D to form an L-cycle cover Capx.
We obtain a factor 8/3 approximation for the case that 2 /∈ L:

w(Capx) ≥ w(D) ≥ 1

2
· w(C init

3 ) ≥ 3

8
· w(Copt).

Now we consider the case that 2 ∈ L and 3 /∈ L. In this case, a matching-
based algorithm achieves an approximation ratio of 5/2: We compute a matching of
a certain cardinality, which we will specify in a moment, and then we join the edges
of the matching to obtain an L-cycle cover. The cardinality of the matching is chosen
such that an L-cycle cover can be built from such a matching. A λ-cycle yields a
matching of cardinality �λ/2
. Thus, a matching of cardinality d in a graph of n
vertices can be extended to form an L-cycle cover if and only if d ≤ D(n,L), where

D(n,L) = max

{
k∑

i=1

�λi/2
 | k ∈ N,

k∑
i=1

λi = n, and λi ∈ L for 1 ≤ i ≤ k

}
≤ n

2
.

Given L, we can compute D(n,L) by using dynamic programming. Let us now
estimate the weight of a matching of cardinality at most D(n,L) that has maximum
weight among all such matchings. From Copt, we obtain a matching with a weight of
at least ∑

λ≥2

1

λ
·
⌊
λ

2

⌋
· wλ ≥

∑
λ≥2

2

5
· wλ =

2

5
· w(Copt).

The reason is that w3 = 0 because 3 /∈ L and that minλ∈{2,4,5,6,7,... }
1
λ · �λ/2
 ≥

2/5. Thus, by computing a maximum-weight matching M of cardinality at most
D(n,L) ≥ 2n/5 and joining the edges to form an L-cycle cover Capx, we obtain a
factor 5/2 approximation.

What remains to be considered is the case that 2, 3 ∈ L. In this case, we start
by computing an initial cycle cover C init (without any restrictions). Then we do the
following: For every even cycle, we take every other edge such that at least one-half
of its weight is preserved. For every edge thus obtained, we add the converse edge to
obtain a collection of 2-cycles. For every odd cycle, we take every other edge and one
path of length two such that at least half of the weight is preserved. Then we add
edges to obtain 2-cycles and one 3-cycle. In this way, we obtain a {2, 3}-cycle cover
Capx, which is also an L-cycle cover. We have w(Capx) ≥ 1

2 · w(C init) ≥ 1
2 · w(Copt).

Figure 12 shows an example.
Our approximation algorithm is summarized as Algorithm 2. The running time

of the algorithm of Bläser, Ram, and Sviridenko is polynomial [7], and all other steps
can be executed in polynomial time as well. Thus, the running time of Algorithm 2
is also polynomial.

Theorem 3.7. Algorithm 2 is a factor 8/3 approximation algorithm for Max-L-
UCC for all nonempty sets L ⊆ D. Its running time is polynomial.
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(a) Initial cycle cover Cinit. (b) Decomposition of Cinit. (c) {2, 3}-cycle cover Capx.

Fig. 12. Sketch of the algorithm for {2, 3} ⊆ L.

Input: directed complete graph G = (V,E), |V | = n; edge weights w : E → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: if 2 ∈ L and 3 ∈ L then
4: compute a cycle cover C init (without restrictions)
5: for all even cycles c of C init do
6: take every other edge of c such that at least one-half of c’s weight is pre-

served
7: add the converse edges to obtain 2-cycles; add these cycles to Capx

8: for all odd cycles c of C init do
9: take every other edge and one path of length two of c such that at least

one-half of c’s weight is preserved
10: add edges to obtain 2-cycles plus one 3-cycle; add these cycles to Capx

11: else if 2 ∈ L, 3 /∈ L then
12: compute a matching M of maximum weight of cardinality at most D(n,L)
13: join the edges of M to form an L-cycle cover Capx

14: else (2 /∈ L)
15: compute a 4/3 approximation C init

3 to an optimal 3-cycle cover
16: decompose C init

3 into a set D ⊆ C init
3 of edges according to Lemma 3.2

17: join the singles and doubles in D to obtain an L-cycle Capx

18: return Capx

Algorithm 2: A factor 8/3 approximation algorithm for Max-L-DCC.

4. Conclusions. For almost all L, finding L-cycle covers is NP-hard, and finding
L-cycle covers of maximum weight is APX-hard. Table 4 shows an overview. Although
this shows that computing restricted cycle covers is generally very hard, we have
proved that L-cycle covers of maximum weight can be approximated within a constant
factor in polynomial time for all L.

For directed graphs, we have settled the complexity: If L = {2} or L = D,
then L-DCC, Max-L-DCC(0,1), and Max-L-DCC are solvable in polynomial time;
otherwise, they are intractable. For undirected graphs, the status of only five cycle
cover problems remains open: L-UCC and Max-L-UCC(0,1) for L = {4}, {3, 4} and
Max-4-UCC.
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There are some reasons for optimism that L-UCC and Max-L-UCC(0,1) for L =
{4}, {3, 4} are solvable in polynomial time: Hartvigsen [18] devised a polynomial-
time algorithm for finding {4}-cycle covers in bipartite graphs (forbidding 3-cycles
does not change the problem for bipartite graphs). Moreover, there are augmenting
path theorems for L-cycle covers for all L with L ⊆ {3, 4} [26], which includes the two
cases that are known to be polynomial-time solvable. Augmenting path theorems are
often a building block for matching algorithms. But there are also augmenting path
theorems for L ⊆ {3, 4} [26], even though these L-cycle cover problems are intractable.

Acknowledgments. I thank Jan Arpe and Martin Böhme for valuable discus-
sions and comments.
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[5] M. Bläser and B. Manthey, Approximating maximum weight cycle covers in directed graphs
with weights zero and one, Algorithmica, 42 (2005), pp. 121–139.
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