1,312 research outputs found
Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models
Relativistic heavy ion collisions are studied assuming that particles can be
described by a hadron gas in thermal and chemical equilibrium. The exact
conservation of baryon number, strangeness and charge are explicitly taken into
account. For heavy ions the effect arising from the neutron surplus becomes
important and leads to a substantial increase in e.g. the ratio.
A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure
First upper limit analysis and results from LIGO science data: stochastic background
I describe analysis of correlations in the outputs of the three LIGO
interferometers from LIGO's first science run, held over 17 days in August and
September of 2002, and the resulting upper limit set on a stochastic background
of gravitational waves. By searching for cross-correlations between the LIGO
detectors in Livingston, LA and Hanford, WA, we are able to set a 90%
confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting
on Gravitational Wave
The Primordial Gravitational Wave Background in String Cosmology
We find the spectrum P(w)dw of the gravitational wave background produced in
the early universe in string theory. We work in the framework of String Driven
Cosmology, whose scale factors are computed with the low-energy effective
string equations as well as selfconsistent solutions of General Relativity with
a gas of strings as source. The scale factor evolution is described by an early
string driven inflationary stage with an instantaneous transition to a
radiation dominated stage and successive matter dominated stage. This is an
expanding string cosmology always running on positive proper cosmic time. A
careful treatment of the scale factor evolution and involved transitions is
made. A full prediction on the power spectrum of gravitational waves without
any free-parameters is given. We study and show explicitly the effect of the
dilaton field, characteristic to this kind of cosmologies. We compute the
spectrum for the same evolution description with three differents approachs.
Some features of gravitational wave spectra, as peaks and asymptotic
behaviours, are found direct consequences of the dilaton involved and not only
of the scale factor evolution. A comparative analysis of different treatments,
solutions and compatibility with observational bounds or detection perspectives
is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
Global structure of exact cosmological solutions in the brane world
We find the explicit coordinate transformation which links two exact
cosmological solutions of the brane world which have been recently discovered.
This means that both solutions are exactly the same with each other. One of two
solutions is described by the motion of a domain wall in the well-known
5-dimensional Schwarzshild-AdS spacetime. Hence, we can easily understand the
region covered by the coordinate used by another solution.Comment: Latex, 9 pages including 5 figures; references add, accepted for
publication in Physical Review
Analysis of Oscillator Neural Networks for Sparsely Coded Phase Patterns
We study a simple extended model of oscillator neural networks capable of
storing sparsely coded phase patterns, in which information is encoded both in
the mean firing rate and in the timing of spikes. Applying the methods of
statistical neurodynamics to our model, we theoretically investigate the
model's associative memory capability by evaluating its maximum storage
capacities and deriving its basins of attraction. It is shown that, as in the
Hopfield model, the storage capacity diverges as the activity level decreases.
We consider various practically and theoretically important cases. For example,
it is revealed that a dynamically adjusted threshold mechanism enhances the
retrieval ability of the associative memory. It is also found that, under
suitable conditions, the network can recall patterns even in the case that
patterns with different activity levels are stored at the same time. In
addition, we examine the robustness with respect to damage of the synaptic
connections. The validity of these theoretical results is confirmed by
reasonable agreement with numerical simulations.Comment: 23 pages, 11 figure
Defining and cataloging exoplanets: The exoplanet.eu database
We describe an online database for extra-solar planetary-mass candidates,
updated regularly as new data are available. We first discuss criteria for the
inclusion of objects in the catalog: "definition" of a planet and several
aspects of the confidence level of planet candidates. {\bf We are led to point
out the conflict between sharpness of belonging or not to a catalogue and
fuzziness of the confidence level.} We then describe the different tables of
extra-solar planetary systems, including unconfirmed candidates (which will
ultimately be confirmed, or not, by direct imaging). It also provides online
tools: histogrammes of planet and host star data, cross-correlations between
these parameters and some VO services. Future evolutions of the database are
presented.Comment: Accepted in Astronomy and Astrophysics (revised version
Normal modes for metric fluctuations in a class of higher-dimensional backgrounds
We discuss a gauge invariant approach to the theory of cosmological
perturbations in a higher-dimensonal background. We find the normal modes which
diagonalize the perturbed action, for a scalar field minimally coupled to
gravity, in a higher-dimensional manifold M of the Bianchi-type I, under the
assumption that the translations along an isotropic spatial subsection of M are
isometries of the full, perturbed background. We show that, in the absence of
scalar field potential, the canonical variables for scalar and tensor metric
perturbations satisfy exactly the same evolution equation, and we discuss the
possible dependence of the spectrum on the number of internal dimensions.Comment: 19 pages, LATEX, an explicit example is added to discuss the possible
dependence of the perturbation spectrum on the number of internal dimensions.
To apper in Class. Quantum Gra
X-ray emission during the muonic cascade in hydrogen
We report our investigations of X rays emitted during the muonic cascade in
hydrogen employing charge coupled devices as X-ray detectors. The density
dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha,
K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of
liquid hydrogen density. In this density region collisional processes dominate
the cascade down to low energy levels. A comparison with recent calculations is
given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter
Studies of the motion and decay of axion walls bounded by strings
We discuss the appearance at the QCD phase transition, and the subsequent
decay, of axion walls bounded by strings in N=1 axion models. We argue on
intuitive grounds that the main decay mechanism is into barely relativistic
axions. We present numerical simulations of the decay process. In these
simulations, the decay happens immediately, in a time scale of order the light
travel time, and the average energy of the radiated axions is for . is found to increase
approximately linearly with . Extrapolation of this behaviour
yields in axion models of interest. We find that the
contribution to the cosmological energy density of axions from wall decay is of
the same order of magnitude as that from vacuum realignment, with however large
uncertainties. The velocity dispersion of axions from wall decay is found to be
larger, by a factor or so, than that of axions from vacuum realignment
and string decay. We discuss the implications of this for the formation and
evolution of axion miniclusters and for the direct detection of axion dark
matter on Earth. Finally we discuss the cosmology of axion models with in
which the domain wall problem is solved by introducing a small U(1)
breaking interaction. We find that in this case the walls decay into
gravitational waves.Comment: 37 pages, 10 figures, a minor mistake was corrected, several
references and comments were adde
- …
