29,360 research outputs found

    Time-resolved photometry of the nova remnants DM Gem, CP Lac, GI Mon, V400 Per, CT Ser and XX Tau

    Get PDF
    We present the first results of a photometric survey of poorly studied nova remnants in the Northern Hemisphere. The main results are as follows: DM Gem shows a modulation at 0.123 d (probably linked to the orbit) and rapid variations at ∼22 min. A moderate resolution spectrum taken at the time of the photometric observations shows intense He II λ4686 and Bowen emission, characteristic of an intermediate polar or a SW Sex star. Variability at 0.127 d and intense flickering (or quasi-periodic oscillations) are the main features of the light curve of CP Lac. A 0.1-mag dip lasting for ∼45 min is observed in GI Mon, which could be an eclipse. A clear modulation (probably related to the orbital motion) either at 0.179 d or 0.152 d is observed in the B-band light curve of V400 Per. The results for CT Ser point to an orbital period close to 0.16 d. Intense flickering is also characteristic of this old nova. Finally, XX Tau shows a possible periodic signal near 0.14 d and displays fast variability at ∼24 min. Its brightness seems to be modulated at ∼5 d. We relate this long periodicity to the motion of an eccentric/tilted accretion disc in the binary

    Formation of corner waves in the wake of a partially submerged bluff body

    Get PDF
    We study theoretically and numerically the downstream flow near the corner of a bluff body partially submerged at a deadrise depth Δh into a uniform stream of velocity U, in the presence of gravity, g. When the Froude number, Fr=U/√gΔh, is large, a three-dimensional steady plunging wave, which is referred to as a corner wave, forms near the corner, developing downstream in a similar way to a two-dimensional plunging wave evolving in time. We have performed an asymptotic analysis of the flow near this corner to describe the wave's initial evolution and to clarify the physical mechanism that leads to its formation. Using the two-dimensions-plus-time approximation, the problem reduces to one similar to dam-break flow with a wet bed in front of the dam. The analysis shows that, at leading order, the problem admits a self-similar formulation when the size of the wave is small compared with the height difference Δh. The essential feature of the self-similar solution is the formation of a mushroom-shaped jet from which two smaller lateral jets stem. However, numerical simulations show that this self-similar solution is questionable from the physical point of view, as the two lateral jets plunge onto the free surface, leading to a self-intersecting flow. The physical mechanism leading to the formation of the mushroom-shaped structure is discussed

    Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores

    Get PDF
    We study the origin of large abundances of complex organic molecules in the Galactic center (GC). We carried out a systematic study of the complex organic molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward 40 GC molecular clouds. Using the LTE approximation, we derived the physical properties of GC molecular clouds and the abundances of the complex molecules.The CH3OH abundance between clouds varies by nearly two orders of magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex organic molecules relative to that of CH3OH is basically independent of the CH3OH abundance, with variations of only a factor 4-8. The abundances of complex organic molecules in the GC are compared with those measured in hot cores and hot corinos, in which these complex molecules are also abundant. We find that both the abundance and the abundance ratios of the complex molecules relative to CH3OH in hot cores are similar to those found in the GC clouds. However, hot corinos show different abundance ratios than observed in hot cores and in GC clouds. The rather constant abundance of all the complex molecules relative to CH3OH suggests that all complex molecules are ejected from grain mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s are required to explain the high abundances in gas phase of complex organic molecules in the GC molecular clouds. The rather uniform abundance ratios in the GC clouds and in Galactic hot cores indicate a similar average composition of grain mantles in both kinds of regions. The Sickle and the Thermal Radio Arches, affected by UV radiation, show different relative abundances in the complex organic molecules due to the differentially photodissociation of these molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx, natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in A&A 2006. version 2. relocated figures and tables. Language editor suggestions. added reference

    Circumbinary Molecular Rings Around Young Stars in Orion

    Full text link
    We present high angular resolution 1.3 mm continuum, methyl cyanide molecular line, and 7 mm continuum observations made with the Submillimeter Array and the Very Large Array, toward the most highly obscured and southern part of the massive star forming region OMC1S located behind the Orion Nebula. We find two flattened and rotating molecular structures with sizes of a few hundred astronomical units suggestive of circumbinary molecular rings produced by the presence of two stars with very compact circumstellar disks with sizes and separations of about 50 AU, associated with the young stellar objects 139-409 and 134-411. Furthermore, these two circumbinary rotating rings are related to two compact and bright {\it hot molecular cores}. The dynamic mass of the binary systems obtained from our data are \geq 4 M_\odot for 139-409 and \geq 0.5 M_\odot for 134-411. This result supports the idea that intermediate-mass stars will form through {\it circumstellar disks} and jets/outflows, as the low mass stars do. Furthermore, when intermediate-mass stars are in multiple systems they seem to form a circumbinary ring similar to those seen in young, multiple low-mass systems (e.g., GG Tau and UY Aur).Comment: Accepted by Astronomy and Astrophysic

    Triaxial Angular Momentum Projection and Configuration Mixing calculations with the Gogny force

    Full text link
    We present the first implementation in the (β,γ)(\beta,\gamma) plane of the generator coordinate method with full triaxial angular momentum and particle number projected wave functions using the Gogny force. Technical details about the performance of the method and the convergence of the results both in the symmetry restoration and the configuration mixing parts are discussed in detail. We apply the method to the study of 24^{24}Mg, the calculated energies of excited states as well as the transition probabilities are compared to the available experimental data showing a good overall agreement. In addition, we present the RVAMPIR approach which provides a good description of the ground and gamma bands in the absence of strong mixing.Comment: 40 pages,14 figure

    Multi-component symmetry-projected approach for molecular ground state correlations

    Get PDF
    The symmetry-projected Hartree--Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically-improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ\mu-oxo) forms of [Cu2_2O2_2]2+^{2+}, comparable to other state-of-the-art quantum chemical methods
    corecore