2,645 research outputs found
MHD Turbulence Revisited
Kraichnan (1965) proposed that MHD turbulence occurs as a result of
collisions between oppositely directed Alfv\'en wave packets. Recent work has
generated some controversy over the nature of non linear couplings between
colliding Alfv\'en waves. We find that the resolution to much of the confusion
lies in the existence of a new type of turbulence, intermediate turbulence, in
which the cascade of energy in the inertial range exhibits properties
intermediate between those of weak and strong turbulent cascades. Some
properties of intermediate MHD turbulence are: (i) in common with weak
turbulent cascades, wave packets belonging to the inertial range are long
lived; (ii) however, components of the strain tensor are so large that, similar
to the situation in strong turbulence, perturbation theory is not applicable;
(iii) the breakdown of perturbation theory results from the divergence of
neighboring field lines due to wave packets whose perturbations in velocity and
magnetic fields are localized, but whose perturbations in displacement are not;
(iv) 3--wave interactions dominate individual collisions between wave packets,
but interactions of all orders make comparable contributions to the
intermediate turbulent energy cascade; (v) successive collisions are correlated
since wave packets are distorted as they follow diverging field lines; (vi) in
common with the weak MHD cascade, there is no parallel cascade of energy, and
the cascade to small perpendicular scales strengthens as it reaches higher wave
numbers; (vii) For an appropriate weak excitation, there is a natural
progression from a weak, through an intermediate, to a strong cascade.Comment: 25 pages, to appear in The Astrophysical Journa
Design, development and delivery of one /1/ breadboard and three /3/ production units of a 75 VA integrated static inverter Monthly progress report no. 11, Mar. 1966
Breadboard model development of integrated static inverte
Design, development and delivery of one /1/ breadboard and three /3/ production units of a 75 VA integrated static inverter Monthly report no. 15
Flip-flop arrays, power transistors, epitaxial stress, and other technological developments in integrated static inverter progra
A Joint Sunyaev-Zel'dovich Effect and X-ray Analysis of Abell 3667
We present a 40GHz (7.5 mm) raster scan image of a 3.6x2 degree region
centered on the low redshift (z=0.055) cluster of galaxies Abell 3667. The
cluster was observed during the Antarctic winter of 1999 using the Corona
instrument (15.7' FWHM beam) on the Viper Telescope at the South Pole. The
Corona image of A3667 is one of the first direct (i.e. rather than
interferometer) thermal Sunyaev-Zel'dovich effect images of a low redshift
cluster. The brightness temperature decrement at the X-ray centroid (20h 12m
28.9s, -56 49 51 J2000) was measured to be . We
have used the 40GHz map of A3667 in conjunction with a deep ROSAT PSPC (X-ray)
image of the cluster, to make a measurement of the Hubble Constant. We find
km s Mpc (68% confidence interval). Our
calculation assumes that the cluster can be described using an
isothermal, tri-axial ellipsoidal, -model and includes several new
analysis techniques including an automated method to remove point sources from
X-ray images with variable point spread functions, and an efficient method for
determining the errors in multi-parameter maximum likelihood analyzes. The
large errors on the measurement are primarily due to the statistical
noise in the Corona image. We plan to increase the precision of our measurement
by including additional clusters in our analysis and by increasing the
sensitivity of the Viper SZE maps.Comment: 15 pages, 4 figures, submitted to ApJ (count rate units corrected in
Table 1 and Figure 4
An MPEG-7 scheme for semantic content modelling and filtering of digital video
Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma
Equations describing the linear evolution of a non-dissipative Langmuir wave
in inhomogeneous nonstationary anisotropic plasma without magnetic field are
derived in the geometrical optics approximation. A continuity equation is
obtained for the wave action density, and the conditions for the action
conservation are formulated. In homogeneous plasma, the wave field E
universally scales with the electron density N as E ~ N^{3/4}, whereas the
wavevector evolution varies depending on the wave geometry
Interface barriers at the interfaces of polar GaAs(111) faces with Al2O3
Internal photoemission measurements of barriers for electrons at interfaces between GaAs(111) and atomic-layer deposited Al2O3 indicate that changing the GaAs polar crystal face orientation from the Ga-terminated (111)A to the As-terminated (111)B has no effect on the barrier height and remains the same as at the non-polar GaAs(100)/Al2O3 interface. Moreover, the presence of native oxide on GaAs(111) or passivation of this surface with sulphur also have no measurable influence on the GaAs(111)/Al2O3 barrier. These results suggest that the orientation and composition-sensitive surface dipoles conventionally observed at GaAs surfaces are effectively compensated at GaAs/oxide interfaces. (C) 2012 American Institute of Physics. (http://dx.doi.org/10.1063/1.3698461
Overturning established chemoselectivities : selective reduction of arenes over malonates and cyanoacetates by photoactivated organic electron donors
The prevalence of metal-based reducing reagents, including metals, metal complexes, and metal salts, has produced an empirical order of reactivity that governs our approach to chemical synthesis. However, this reactivity may be influenced by stabilization of transition states, intermediates, and products through substrate-metal bonding. This article reports that in the absence of such stabilizing interactions, established chemoselectivities can be overthrown. Thus, photoactivation of the recently developed neutral organic superelectron donor 5 selectively reduces alkyl-substituted benzene rings in the presence of activated esters and nitriles, in direct contrast to metal-based reductions, opening a new perspective on reactivity. The altered outcomes arising from the organic electron donors are attributed to selective interactions between the neutral organic donors and the arene rings of the substrates
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole
We report on studies of the viability and sensitivity of the Askaryan Radio
Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy
neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at
the South Pole. An initial prototype ARA detector system was installed in
January 2011, and has been operating continuously since then. We report on
studies of the background radio noise levels, the radio clarity of the ice, and
the estimated sensitivity of the planned ARA array given these results, based
on the first five months of operation. Anthropogenic radio interference in the
vicinity of the South Pole currently leads to a few-percent loss of data, but
no overall effect on the background noise levels, which are dominated by the
thermal noise floor of the cold polar ice, and galactic noise at lower
frequencies. We have also successfully detected signals originating from a 2.5
km deep impulse generator at a distance of over 3 km from our prototype
detector, confirming prior estimates of kilometer-scale attenuation lengths for
cold polar ice. These are also the first such measurements for propagation over
such large slant distances in ice. Based on these data, ARA-37, the 200 km^2
array now under construction, will achieve the highest sensitivity of any
planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation
length analysis; for submission to Astroparticle Physic
- …