1,349 research outputs found
Semimetallic molecular hydrogen at pressure above 350 GPa
According to the theoretical predictions, insulating molecular hydrogen
dissociates and transforms to an atomic metal at pressures P~370-500 GPa. In
another scenario, the metallization first occurs in the 250-500 GPa pressure
range in molecular hydrogen through overlapping of electronic bands. The
calculations are not accurate enough to predict which option is realized. Here
we show that at a pressure of ~360 GPa and temperatures <200 K the hydrogen
starts to conduct, and that temperature dependence of the electrical
conductivity is typical of a semimetal. The conductivity, measured up to 440
GPa, increases strongly with pressure. Raman spectra, measured up to 480 GPa,
indicate that hydrogen remains a molecular solid at pressures up to 440 GPa,
while at higher pressures the Raman signal vanishes, likely indicating further
transformation to a good molecular metal or to an atomic state
Depth Profiling of Multilayer Mo/Si Nanostructures
A round-robin characterization is reported on the sputter depth profiling of [60(3.0 nm Mo/ 0.3 nm B4C/ 3.7 nm Si)] and [60 (3.5 nm Mo/ 3.5 nm Si)] stacks deposited on Si (111). Two different commercial secondary ion mass spectrometers with time-of-flight and magnetic-sector analyzers and a pulsed radio frequency glow discharge optical emission spectrometer were used. The pros and cons of each instrumental approach are discussed.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3526
Elemental Phosphorus: structural and superconducting phase diagram under pressure
Pressure-induced superconductivity and structural phase transitions in
phosphorous (P) are studied by resistivity measurements under pressures up to
170 GPa and fully crystal structure and superconductivity
calculations up to 350 GPa. Two distinct superconducting transition temperature
(T) vs. pressure () trends at low pressure have been reported more
than 30 years ago, and for the first time we are able to reproduce them and
devise a consistent explanation founded on thermodynamically metastable phases
of black-phosphorous. Our experimental and theoretical results form a single,
consistent picture which not only provides a clear understanding of elemental P
under pressure but also sheds light on the long-standing and unsolved
superconductivity trend. Moreover, at higher pressures we predict a
similar scenario of multiple metastable structures which coexist beyond their
thermodynamical stability range. Metastable phases of P experimentally
accessible at pressures above 240 GPa should exhibit T's as high as 15 K,
i.e. three times larger than the predicted value for the ground-state crystal
structure. We observe that all the metastable structures systematically exhibit
larger transition temperatures than the ground-state ones, indicating that the
exploration of metastable phases represents a promising route to design
materials with improved superconducting properties.Comment: 14 pages, 4 figure
Spectroscopy of HS: evidence of a new energy scale for superconductivity
The discovery of a superconducting phase in sulfur hydride under high
pressure with a critical temperature above 200 K has provided a new impetus to
the search for even higher . Theory predicted and experiment confirmed
that the phase involved is HS with Im-3m crystal structure. The observation
of a sharp drop in resistance to zero at , its downward shift with
magnetic field and a Meissner effect confirm superconductivity but the
mechanism involved remains to be determined. Here, we provide a first optical
spectroscopy study of this new superconductor. Experimental results for the
optical reflectivity of HS, under high pressure of 150 GPa, for several
temperatures and over the range 60 to 600 meV of photon energies, are compared
with theoretical calculations based on Eliashberg theory using DFT results for
the electron-phonon spectral density F(). Two significant
features stand out: some remarkably strong infrared active phonons at
160 meV and a band with a depressed reflectance in the superconducting state in
the region from 450 meV to 600 meV. In this energy range, as predicted by
theory, HS is found to become a better reflector with increasing
temperature. This temperature evolution is traced to superconductivity
originating from the electron-phonon interaction. The shape, magnitude, and
energy dependence of this band at 150 K agrees with our calculations. This
provides strong evidence of a conventional mechanism. However, the unusually
strong optical phonon suggests a contribution of electronic degrees of freedom.Comment: 10 pages, 8 figures. Main manuscript and supplementary informatio
Termination dependent topological surface states of the natural superlattice phase BiSe
We describe the topological surface states of BiSe, a compound in the
infinitely adaptive Bi-BiSe natural superlattice phase series,
determined by a combination of experimental and theoretical methods. Two
observable cleavage surfaces, terminating at Bi or Se, are characterized by
angle resolved photoelectron spectroscopy and scanning tunneling microscopy,
and modeled by ab-initio density functional theory calculations. Topological
surface states are observed on both surfaces, but with markedly different
dispersions and Kramers point energies. BiSe therefore represents the
only known compound with different topological states on differently terminated
surfaces.Comment: 5 figures references added Published in PRB:
http://link.aps.org/doi/10.1103/PhysRevB.88.08110
The space physics environment data analysis system (SPEDAS)
With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
Non-equilibrium phase transition in a sheared granular mixture
The dynamics of an impurity (or tracer particle) immersed in a dilute
granular gas under uniform shear flow is investigated. A non-equilibrium phase
transition is identified from an exact solution of the inelastic Boltzmann
equation for a granular binary mixture in the tracer limit, where the impurity
carries either a vanishing (disordered phase) or a finite (ordered phase)
fraction of the total kinetic energy of the system. In the disordered phase,
the granular temperature ratio (impurity "temperature" over that of the host
fluid) is finite, while it diverges in the ordered phase. To correctly capture
this extreme violation of energy equipartition, we show that the picture of an
impurity enslaved to the host fluid is insufficient
- …
