13,007 research outputs found

    A redshift survey of IRAS galaxies

    Get PDF
    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L sup -2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Francis Daniels Moore: one of the brightest minds in the surgical field.

    Get PDF
    Francis Daniels Moore was a pioneer ahead of his time who made numerous landmark contributions to the field of surgery, including the understanding of metabolic physiology during surgery, liver and kidney transplant, and the famous Study on Surgical Services of the United States (SOSSUS) report of 1975 that served for decades as a guideline for development of surgical residencies. He was the epitome of what a physician should be, a compassionate and dedicated surgeon, innovative scientist, and a medical professional dedicated to quality medical education across all specialties

    Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds

    Full text link
    The physical basis for interpreting observations of nebular morphology around massive stars in terms of the evolution of the central stars is reviewed, and examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf (Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A full-resolution version of fig 4 is available in the version at http://www.mpia-hd.mpg.de/theory/preprints.html#maclo

    Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence

    Full text link
    (Modified) The scaling of velocity fluctuation, dv, as a function of spatial scale L in molecular clouds can be measured from size-linewidth relations, principal component analysis, or line centroid variation. Differing values of the power law index of the scaling relation dv = L^(g3D) in 3D are given by these different methods: the first two give g3D=0.5, while line centroid analysis gives g3D=0. This discrepancy has previously not been fully appreciated, as the variation of projected velocity line centroid fluctuations (dv_{lc} = L^(g2D)) is indeed described, in 2D, by g2D=0.5. However, if projection smoothing is accounted for, this implies that g3D=0. We suggest that a resolution of this discrepancy can be achieved by accounting for the effect of density inhomogeneity on the observed g2D obtained from velocity line centroid analysis. Numerical simulations of compressible turbulence are used to show that the effect of density inhomogeneity statistically reverses the effect of projection smoothing in the case of driven turbulence so that velocity line centroid analysis does indeed predict that g2D=g3D=0.5. Using our numerical results we can restore consistency between line centroid analysis, principal component analysis and size-linewidth relations, and we derive g3D=0.5, corresponding to shock-dominated (Burgers) turbulence. We find that this consistency requires that molecular clouds are continually driven on large scales or are only recently formed.Comment: 28 pages total, 20 figures, accepted for publication in Ap

    Dysfunctional Light-Evoked Regulation of cAMP in Photoreceptors and Abnormal Retinal Adaptation in Mice Lacking Dopamine D4 Receptors

    Get PDF
    Dopamine is a retinal neuromodulator that has been implicated in many aspects of retinal physiology. Photoreceptor cells express dopamine D4 receptors that regulate cAMP metabolism. To assess the effects of dopamine on photoreceptor physiology, we examined the morphology, electrophysiology, and regulation of cAMP metabolism in mice with targeted disruption of the dopamine D4 receptor gene. Photoreceptor morphology and outer segment disc shedding after light onset were normal in D4 knock-out (D4KO) mice. Quinpirole, a dopamine D2/ D3/D4 receptor agonist, decreased cAMP synthesis in retinas of wild-type (WT) mice but not in retinas of D4KO mice. In WT retinas, the photoreceptors of which were functionally isolated by incubation in the presence of exogenous glutamate, light also suppressed cAMP synthesis. Despite the similar inhibition of cAMP synthesis, the effect of light is directly on the photoreceptors and independent of dopamine modulation, because it was unaffected by application of the D4 receptor antagonist L-745,870. Nevertheless, compared with WT retinas, basal cAMP formation was reduced in the photoreceptors of D4KO retinas, and light had no additional inhibitory effect. The results suggest that dopamine, via D4 receptors, normally modulates the cascade that couples light responses to adenylyl cyclase activity in photoreceptor cells, and the absence of this modulation results in dysfunction of the cascade. Dark-adapted electroretinogram (ERG) responses were normal in D4KO mice. However, ERG b-wave responses were greatly suppressed during both light adaptation and early stages of dark adaptation. Thus, the absence of D4 receptors affects adaptation, altering transmission of light responses from photoreceptors to inner retinal neurons. These findings indicate that dopamine D4 receptors normally play a major role in regulating photoreceptor cAMP metabolism and adaptive retinal responses to changing environmental illumination.Fil: Nir, Izhak. The University of Texas Health Science Center; Estados UnidosFil: Harrison, Joseph M.. The University of Texas Health Science Center; Estados UnidosFil: Haque, Rashidul. Emory University School of Medicine; Estados UnidosFil: Low, Malcolm J.. Oregon Health and Science University; Estados UnidosFil: Grandy, David K.. Oregon Health and Science University; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Iuvone, P. Michael. Emory University School of Medicine; Estados Unido

    Corrections to deuterium hyperfine structure due to deuteron excitations

    Full text link
    We consider the corrections to deuterium hyperfine structure originating from the two-photon exchange between electron and deuteron, with the deuteron excitations in the intermediate states. In particular, the motion of the two intermediate nucleons as a whole is taken into account. The problem is solved in the zero-range approximation. The result is in good agreement with the experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
    corecore