587 research outputs found

    Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    Get PDF
    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m^−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m^−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m^−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m^−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m^−3), we have also calculated a value of ~17 Tg yr^−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–10^4 m^−3; ~0.1–1 μg m^−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m^−3 and ~50 Tg yr^−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr^−1 of anthropogenic primary organic aerosol; 12–70 Tg yr^−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions

    Top EW couplings at Linear Colliders

    Get PDF
    In this talk, we present the latest study of e+e− → t¯t, based on a detailed simulation of the ILD detector concept, which assumes a centre-of-mass energy of √s = 500 GeV and a luminosity of L = 500fb−1, equality shared between the incoming beam polarisations of P e−,e+ = (±0.8,∓0.3). The study comprises the cross sections, the forward-backward asymmetry and the slope of the helicity angle asymmetry. The vector and axial vector couplings are separately determined for the photon and the Z component. The tensorial CP-conserving coupling can be also extracted by assuming the other couplings to be the SM values. We show that the sensitivity to new physics would be dramatically improved with respect to what is expected from LHC for electroweak couplings

    A precise characterisation of the top quark electro-weak vertices at the ILC

    Get PDF
    Top quark production in the process e+ettˉe^+e^- \to t\bar{t} at a future linear electron positron collider with polarised beams is a powerful tool to determine indirectly the scale of new physics. The presented study, based on a detailed simulation of the ILD detector concept, assumes a centre-of-mass energy of s=500\sqrt{s}=500\,GeV and a luminosity of L=500fb1\mathcal{L}=500\,{\rm fb}^{-1} equally shared between the incoming beam polarisations of Pe,Pe+=±0.8,0.3\mathcal{P}_{e^-}, \mathcal{P}_{e^+} =\pm0.8,\mp0.3. Events are selected in which the top pair decays semi-leptonically and the cross sections and the forward-backward asymmetries are determined. Based on these results, the vector, axial vector and tensorial CPCP conserving couplings are extracted separately for the photon and the Z0Z^0 component. With the expected precision, a large number of models in which the top quark acts as a messenger to new physics can be distinguished with many standard deviations. This will dramatically improve expectations from e.g. the LHC for electro-weak couplings of the top quark.Comment: This work is an update of arXiv:1307.8102, minor changes w.r.t. v1 (typos, wrong grammar, incomplete sentences etc.

    Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models

    Get PDF
    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [ Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99

    Relativistic shape invariant potentials

    Get PDF
    Dirac equation for a charged spinor in electromagnetic field is written for special cases of spherically symmetric potentials. This facilitates the introduction of relativistic extensions of shape invariant potential classes. We obtain the relativistic spectra and spinor wavefunctions for all potentials in one of these classes. The nonrelativistic limit reproduces the usual Rosen-Morse I & II, Eckart, Poschl-Teller, and Scarf potentials.Comment: Corrigendum: The last statement above equation (1) is now corrected and replaced by two new statement

    Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    Get PDF
    International audienceExperimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN) with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC) have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20?220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, extending over a period of more than one year and covering a wide range of operating conditions (650?1020 hPa ambient pressure, 0.5?1.0 L min?1 aerosol flow rate, 20?30°C inlet temperature, 4?34 K m?1 temperature gradient). For each set of conditions, the effective water vapor supersaturation (Seff) in the CCNC was determined from the measured CCN activation spectra and Köhler model calculations. High measurement precision was achieved under stable laboratory conditions, where relative variations of Seff in the CCNC were generally less than ±2%. During field measurements, however, the relative variability increased up to ±5?7%, which can be mostly attributed to variations of the CCNC column top temperature with ambient temperature. To assess the accuracy of the Köhler models used to calculate Seff, we have performed a comprehensive comparison and uncertainty analysis of the various Köhler models and thermodynamic parameterizations commonly used in CCN studies. For the relevant supersaturation range (0.05?2%), the relative deviations between different modeling approaches were as high as 25% for (NH4)2SO4 and 16% for NaCl. The deviations were mostly caused by the different parameterizations for the activity of water in aqueous solutions of (NH4)2SO4 and NaCl (activity parameterization, osmotic coefficient, and van't Hoff factor models). The uncertainties related to the model parameterizations of water activity clearly exceeded the CCNC measurement precision. Relative deviations caused by different ways of calculating or approximating solution density and surface tension did not exceed 3% for (NH4)2SO4 and 1.5% for NaCl. Nevertheless, they did exceed the CCNC measurement precision under well-defined operating conditions and should not be neglected in studies aimed at high accuracy. To ensure comparability of results, we suggest that CCN studies should always report exactly which Köhler model equations and parameterizations of solution properties were used. Substantial differences between the CCNC calibration results obtained with (NH4)2SO4 and NaCl aerosols under equal experimental conditions (relative deviations of Seff up to ~10%) indicate inconsistencies between widely used activity parameterizations derived from electrodynamic balance (EDB) single particle experiments (Tang and Munkelwitz, 1994; Tang, 1996) and hygroscopicity tandem differential mobility analyzer (HTDMA) aerosol experiments (Kreidenweis et al., 2005). Therefore, we see a need for further evaluation and experimental confirmation of preferred data sets and parameterizations for the activity of water in dilute aqueous (NH4)2SO4 and NaCl solutions. The experimental results were also used to test the CCNC flow model of Lance et al.~(2006), which describes the dependence of Seff on temperature, pressure, and flow rate in the CCN counter. This model could be applied after subtraction of a near-constant temperature offset and derivation of an instrument-specific thermal resistance parameter (RT?1.8 K W?1). At Seff>0.1% the relative deviations between the flow model and experimental results were mostly less than 5%, when the same Köhler model approach was used. At Seff?.1%, however, the deviations exceeded 20%, which can be attributed to non-idealities which also caused the near-constant temperature offset. Therefore, we suggest that the CCNC flow model can be used to extrapolate calibration results, but should generally be complemented by calibration experiments performed under the relevant operating conditions ? during field campaigns as well as in laboratory studies

    Proton drip-line nuclei in Relativistic Hartree-Bogoliubov theory

    Get PDF
    Ground-state properties of spherical even-even nuclei 14Z2814\leq Z \leq 28 and N=18,20,22N=18,20,22 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction D1S. Binding energies, two-proton separation energies, and proton rmsrms radii that result from fully self-consistent RHB solutions are compared with experimental data. The model predicts the location of the proton drip-line. The isospin dependence of the effective spin-orbit potential is discussed, as well as pairing properties that result from the finite range interaction in the pppp channel.Comment: 12 pages, RevTex, 10 p.s figures, submitted to Phys. Rev.

    Axially symmetric Hartree-Fock-Bogoliubov Calculations for Nuclei Near the Drip-Lines

    Full text link
    Nuclei far from stability are studied by solving the Hartree-Fock-Bogoliubov (HFB) equations, which describe the self-consistent mean field theory with pairing interaction. Calculations for even-even nuclei are carried out on two-dimensional axially symmetric lattice, in coordinate space. The quasiparticle continuum wavefunctions are considered for energies up to 60 MeV. Nuclei near the drip lines have a strong coupling between weakly bound states and the particle continuum. This method gives a proper description of the ground state properties of such nuclei. High accuracy is achieved by representing the operators and wavefunctions using the technique of basis-splines. The detailed representation of the HFB equations in cylindrical coordinates is discussed. Calculations of observables for nuclei near the neutron drip line are presented to demonstrate the reliability of the method.Comment: 13 pages, 4 figures. Submitted to Physical Review C on 05/08/02. Revised on Dec/0

    Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene

    Get PDF
    The cloud condensation nuclei (CCN) properties of ammonium sulfate particles mixed with organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene (C<sub>5</sub>H<sub>8</sub>) were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass concentrations of 0.5 to 10.0 μg m<sup>−3</sup>, NO<sub>x</sub> concentrations from under 0.4 ppbv up to 38 ppbv, particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 °C. At 25 °C, the observed CCN activation curves were accurately described by a Köhler model having two internally mixed components, namely ammonium sulfate and secondary organic material. The modeled physicochemical parameters of the organic material were equivalent to an effective hygroscopicity parameter κ<sub>ORG</sub> of 0.10±0.03, regardless of the C<sub>5</sub>H<sub>8</sub>:NO<sub>x</sub> concentration ratio for the span of >200:0.4 to 50:38 (ppbv:ppbv). The volatilization curves (i.e., plots of the residual organic volume fraction against temperature) were also similar for the span of investigated C<sub>5</sub>H<sub>8</sub>:NO<sub>x</sub> ratios, suggesting a broad similarity of particle chemical composition. This suggestion was supported by limited variance at 25 °C among the particle mass spectra. For example, the signal intensity at <i>m/z</i> 44 (which can result from the fragmentation of oxidized molecules believed to affect hygroscopicity and CCN properties) varied weakly from 6 to 9% across the range of investigated conditions. In contradistinction to the results for 25 °C, conditioning up to 100 °C in the thermodenuder significantly reduced CCN activity. The altered CCN activity might be explained by chemical reactions (e.g., decomposition or oligomerization) of the secondary organic material at elevated temperatures. The study's results at 25 °C, in conjunction with the results of other chamber and field studies for a diverse range of conditions, suggest that a value of 0.10±0.05 for κ<sub>ORG</sub> is representative of both anthropogenic and biogenic secondary organic material. This finding supports the use of κ<sub>ORG</sub> as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models
    corecore