77 research outputs found

    Critical exponents in zero dimensions

    Full text link
    In the vicinity of the onset of an instability, we investigate the effect of colored multiplicative noise on the scaling of the moments of the unstable mode amplitude. We introduce a family of zero dimensional models for which we can calculate the exact value of the critical exponents βm\beta_m for all the moments. The results are obtained through asymptotic expansions that use the distance to onset as a small parameter. The examined family displays a variety of behaviors of the critical exponents that includes anomalous exponents: exponents that differ from the deterministic (mean-field) prediction, and multiscaling: non-linear dependence of the exponents on the order of the moment

    Anomalous exponents at the onset of an instability

    Full text link
    Critical exponents are calculated exactly at the onset of an instability, using asymptotic expansiontechniques. When the unstable mode is subject to multiplicative noise whose spectrum at zero frequency vanishes, we show that the critical behavior can be anomalous, i.e. the mode amplitude X scales with departure from onset \mu as  μβ ~ \mu^\beta with an exponent β\beta different from its deterministic value. This behavior is observed in a direct numerical simulation of the dynamo instability and our results provide a possible explanation to recent experimental observations

    Effects of the low frequencies of noise on On-Off intermittency

    Full text link
    A bifurcating system subject to multiplicative noise can exhibit on-off intermittency close to the instability threshold. For a canonical system, we discuss the dependence of this intermittency on the Power Spectrum Density (PSD) of the noise. Our study is based on the calculation of the Probability Density Function (PDF) of the unstable variable. We derive analytical results for some particular types of noises and interpret them in the framework of on-off intermittency. Besides, we perform a cumulant expansion for a random noise with arbitrary power spectrum density and show that the intermittent regime is controlled by the ratio between the departure from the threshold and the value of the PSD of the noise at zero frequency. Our results are in agreement with numerical simulations performed with two types of random perturbations: colored Gaussian noise and deterministic fluctuations of a chaotic variable. Extensions of this study to another, more complex, system are presented and the underlying mechanisms are discussed.Comment: 13pages, 13 figure

    On the localized phase of a copolymer in an emulsion: supercritical percolation regime

    Get PDF
    In this paper we study a two-dimensional directed self-avoiding walk model of a random copolymer in a random emulsion. The copolymer is a random concatenation of monomers of two types, AA and BB, each occurring with density 1/2. The emulsion is a random mixture of liquids of two types, AA and BB, organised in large square blocks occurring with density pp and 1p1-p, respectively, where p(0,1)p \in (0,1). The copolymer in the emulsion has an energy that is minus α\alpha times the number of AAAA-matches minus β\beta times the number of BBBB-matches, where without loss of generality the interaction parameters can be taken from the cone {(α,β)R2 ⁣:αβ}\{(\alpha,\beta)\in\R^2\colon \alpha\geq |\beta|\}. To make the model mathematically tractable, we assume that the copolymer is directed and can only enter and exit a pair of neighbouring blocks at diagonally opposite corners. In \cite{dHW06}, it was found that in the supercritical percolation regime ppcp \geq p_c, with pcp_c the critical probability for directed bond percolation on the square lattice, the free energy has a phase transition along a curve in the cone that is independent of pp. At this critical curve, there is a transition from a phase where the copolymer is fully delocalized into the AA-blocks to a phase where it is partially localized near the ABAB-interface. In the present paper we prove three theorems that complete the analysis of the phase diagram : (1) the critical curve is strictly increasing; (2) the phase transition is second order; (3) the free energy is infinitely differentiable throughout the partially localized phase.Comment: 43 pages and 10 figure

    Bounds on dissipation in magnetohydrodynamic problems in plane shear geometry

    Full text link
    The total dissipation rate for magnetohydrodynamic (MHD) flows in plane geometry with both velocity and magnetic shear is studied. For some boundary conditions it is shown that the lower bound on the dissipation rate is achieved by the equivalent of Stokes flow for MHD. Using the background method [Doering and Constantin, Phys. Rev. Lett. 69, 1648 (1992)] upper bounds for the dissipation rate are calculated. For a shear layer, with both velocity and magnetic shear, parameter dependence of the upper bound is obtained. As a by-product of this calculation, an energy stability domain is calculated. A sheet pinch is also studied, and it is shown that the upper bound tends to zero as the resistivity tends to zero. Thus, an antiturbulence result is obtained. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70246/2/PHPAEN-10-11-4314-1.pd

    Transport of magnetic field by a turbulent flow of liquid sodium

    Full text link
    We study the effect of a turbulent flow of liquid sodium generated in the von K\'arm\'an geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.Comment: 4 pages, 6 figure

    Annealed scaling for a charged polymer

    Get PDF
    Analysis and Stochastic

    Chaotic magnetic field reversals in turbulent dynamos

    Full text link
    We present direct numerical simulations of reversals of the magnetic field generated by swirling flows in a spherical domain. In agreement with a recent model, we observe that coupling dipolar and quadrupolar magnetic modes by an asymmetric forcing of the flow generates field reversals. In addition, we show that this mechanism strongly depends on the value of the magnetic Prandtl number.Comment: 4 pages, 5 figure

    Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium

    Get PDF
    We report the observation of dynamo action in the VKS experiment, i.e., the generation of magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic field of order 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure
    corecore