4,359 research outputs found

    Elementary immunology

    Get PDF

    New column configurations for pressure swing batch distillation II. Rigorous simulation calculations

    Get PDF
    The pressure swing distillation in different batch column configurations is investigated by rigorous simulation calculations. The calculations are made by a professional flow-sheet simulator for the separation of a minimum (ethanol–toluene) and a maximum boiling (water– ethylene-diamine) azeotropic mixture. Besides studying the well known configurations (rectifier, stripper) we also investigate two novel configurations such as double column batch rectifier and double column batch stripper. The alternate application of a batch rectifier and a batch stripper is also studied. The different column configurations are compared

    Bell inequality and common causal explanation in algebraic quantum field theory

    Get PDF
    Bell inequalities, understood as constraints between classical conditional probabilities, can be derived from a set of assumptions representing a common causal explanation of classical correlations. A similar derivation, however, is not known for Bell inequalities in algebraic quantum field theories establishing constraints for the expectation of specific linear combinations of projections in a quantum state. In the paper we address the question as to whether a 'common causal justification' of these non-classical Bell inequalities is possible. We will show that although the classical notion of common causal explanation can readily be generalized for the non-classical case, the Bell inequalities used in quantum theories cannot be derived from these non-classical common causes. Just the opposite is true: for a set of correlations there can be given a non-classical common causal explanation even if they violate the Bell inequalities. This shows that the range of common causal explanations in the non-classical case is wider than that restricted by the Bell inequalities

    Asymptotic behavior of the generalized St. Petersburg sum conditioned on its maximum

    Get PDF
    In this paper, we revisit the classical results on the generalized St. Petersburg sums. We determine the limit distribution of the St. Petersburg sum conditioning on its maximum, and we analyze how the limit depends on the value of the maximum. As an application, we obtain an infinite sum representation of the distribution function of the possible semistable limits. In the representation, each term corresponds to a given maximum, in particular this result explains that the semistable behavior is caused by the typical values of the maximum.Comment: Published at http://dx.doi.org/10.3150/14-BEJ685 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    A statistical method to estimate low-energy hadronic cross sections

    Full text link
    In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s energy. The method is based on the idea, when two particles collide a so called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton\,-\,antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.Comment: 12 pages, 12 figures, submitted to EPJ
    • 

    corecore