
Bell inequality and ommon ausal explanationin algebrai quantum �eld theoryGábor Hofer-Szabó∗Péter Vesernyés†AbstratBell inequalities, understood as onstraints between lassial onditional probabilities, anbe derived from a set of assumptions representing a ommon ausal explanation of lassialorrelations. A similar derivation, however, is not known for Bell inequalities in algebrai quan-tum �eld theories establishing onstraints for the expetation of spei� linear ombinations ofprojetions in a quantum state. In the paper we address the question as to whether a `om-mon ausal justi�ation' of these non-lassial Bell inequalities is possible. We will show thatalthough the lassial notion of ommon ausal explanation an readily be generalized for thenon-lassial ase, the Bell inequalities used in quantum theories annot be derived from thesenon-lassial ommon auses. Just the opposite is true: for a set of orrelations there an begiven a non-lassial ommon ausal explanation even if they violate the Bell inequalities. Thisshows that the range of ommon ausal explanations in the non-lassial ase is wider than thatrestrited by the Bell inequalities.Key words: Bell inequality, ommon ause, nonommutativity, algebrai quantum �eld theory.1 IntrodutionThe original ontext whih led to the formulation of the Bell inequalities was the intention to ao-modate quantum orrelations in a loally ausal theory. The learest formulation of suh a theory isdue to Bell himself (Bell, 1987, p. 54). In a number of seminal papers Bell arefully analyzed the in-tuitions lying behind our notion of loality and ausality. His major ontribution, however, onsistedin translating these intriate notions into a simple probabilisti language whih made these notionstratable both for mathematial treatment and later for experimental testability. This probabilistiframework made it possible to exatly identify the probabilisti requirements responsible for the vio-lation of the Bell inequalities in the EPR senario. A deade later authors like Van Fraassen (1982),Jarrett (1984) and Shimony (1986) spent muh time to analyze the philosophial onsequenes ofgiving up either the one or the other of these probabilisti assumptions. It also turned out soonthat the oneptual framework in whih the Bell inequalities an be treated most naturally is theommon ausal explanation of orrelations, originally stemming from Reihenbah (1956) and lateradopted to the EPR ase by Van Fraassen (1982).Sine the aim of these onsiderations was to aomodate the EPR senario in a lassial worldpiture, both Bell and the subsequent writers used a lassial probabilisti framework in their anal-ysis. All the assumptions representing loality and ausality and also the resulting Bell inequalitieswere formulated in the language of the lassial probability theory. Now, if the Bell inequalities werelassial, how ould they be violated in the EPR senario whih is well known to be desribed by
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quantum theory? Well, the answer is that quantum theory with its mathematial struture and onto-logial ommitments played no role at all in the Bell senario. Quantum mehanis was only used togenerate lassial probabilities, more spei�ally, lassial onditional probabilities by the Born rule.These lassial onditional probabilities, however, ould also have been gained diretly from the ex-periments, and indeed later they have been gained so. In other words, the original ontext of the Bellinequalities has no intimate link to quantum theory even if quantum theory produes probabilitieswhih, reinterpreted as lassial onditional probabilities, violate those inequalities. This lassialview on the Bell inequalities manifests itself in various authors. Niolas Gisin for example writes:�Bell inequalities are relations between onditional probabilities valid under the loality assumption.�(Gisin 2009, p. 126)In the fae of all these, the Bell inequality has made its way into quantum theory. It has been soonformulated as a general mark of entanglement of the given quantum state on a C∗-algebra (Summersand Werner 1987a, b). A quote from Bengtson and Zyzkowski (2006, p. 362) might illustrate thishange of fous in the role of Bell inequalities: �The Bell inequalities may be viewed as a kind ofseparability riterion, related to a partiular entanglement witness, so evidene of their violation forertain states might be regarded as an experimental detetion of quantum entanglement.� How ouldthe Bell inequality make its way to this non-lassial formalism so alien from its original ontext?Does there exist a justi�ation for this `trespass'?In this paper we would like to investigate a possible justi�ation for this transition. In this justi�-ation we intend to follow the route pioneered by Bell, Van Fraassen, Jarrett, Shimony and others inthat we stik to the onvition that the Bell inequalities follow from the requirement of implement-ing orrelations into a loally ausal theory. We transend, however, this view in not assuming thatthis theory has to be lassial. Or in other words, we pose the question whether the probabilistirequirements representing loal ausality and onstituting the ore of the Bell inequalities an bereasonable formulated also in a non-lassial theory.A natural andidate for suh a non-lassial theory with lear oneptions of loality and ausal-ity is algebrai quantum �eld theory (AQFT) (Haag, 1992). In AQFT events are represented byprojetions with well de�ned spaetime support and loal ausality is ensured by a set of axioms.Hene we an pose the question as to whether the Bell inequalities featuring in AQFT follow from aloally ausal explanation of orrelations in a similar manner to the lassial ase. Sine we intendto give a ausal explanation for orrelations between events, therefore ausal explanation is meantto be a ommon ausal explanation. We will see that the onnetion between a ommon ausalexplanation and the Bell inequalities in AQFT is not so tight as in the lassial ase. In the lassialase ommon auses neessarly ommute (in the set theoretial `meet' operation) with their e�ets.Sine the quantum events of AQFT form a nonommutative struture, one an deide whether torequire that ommon auses ommute with their e�ets or not. If ommutativity is required, theBell inequalities will follow from the ommon ause just like in the lassial ase. But, as we willargue, requiring ommutativity is only a remininsene of the lassial treatment of orrelations andis ompletely unjusti�ed in the quantum ase (see e.g. (Clifton, Ruetshe 1999)). For nonommut-ing ommon auses the Bell inequalities will turn out not to be derivable from the presene of theommon ause�at least not in the similar way to the the lassial derivation. This raises the ques-tion whether orrelations violating the Bell inequalities an have a nonommuting ommon ausalexplanation. We will answer this question in the a�rmative showing up a situation when a set oforrelations maximally violating a spei� type Bell inequality has a ommon ausal explanation,whih is loal in the sense that it an be aomodated in the intersetion of the ausal pasts of theorrelating events. The model we use for this example is the loal quantum Ising model, the simplestAQFT with loally �nite degrees of freedom.The paper is strutured as follows. In Setion 2 we brie�y ollet the most important onepts andsome of the representative propositions onerning the Bell inequality in AQFT. In Setion 3 and 4we give the de�nition of the lassial and the non-lassial ommon ausal explanations, respetively,2



and show how these explanations relate to the Bell inequalities. Sine the orret `translation' ofthe so-alled loality and no-onspiray onditions of the lassial ommon ausal explanation intothe non-lassial setting is a subtle point not needed for our main purpose, we transfer it into theAppendix. Now, the ommon ausal explanations in the EPR-Bell senario is always meant asproviding a joint ommon ause for a set of orrelations. Providing a joint ommon ause for aset of orrelations is muh more demanding than simply providing a ommon ause for a singleorrelation. Therefore in Setion 5, preparing for the more ompliated ase, we investigate thepossibility of a ommon ausal explanation of a single orrelation, or in the philosophers' jargon, thestatus of the Common Causal Priniple in AQFT. In Setion 6 we return to our original question andpresent a nonommutative ommon ausal explanation for a set of orrelations maximally violatingsome Bell inequalities. In Setion 7 we brie�y analyze the philosophial onsequenes of applyingnonommuting ommon auses in our ausal explanation. We onlude the paper in Setion 8.2 The Bell inequality in algebrai quantum �eld theoryIn this Setion we ollet the most important onepts and some of the representative propositionsonerning the Bell inequality in AQFT (see (Summers 1990) and (Halvorson 2007)). We start withthe general C∗-algebrai setting and then go over to the speial algebrai quantum �eld theoretialformulation.In the general C∗-algebrai setting Bell inequality is treated in the following way. Let A and Bbe two mutually ommuting C∗-subalgebras of some C∗-algebra C. A Bell operator R for the pair(A,B) is an element of the following set:
B(A,B) :=

{

1

2

(

X1(Y1 + Y2) +X2(Y1 − Y2)
) ∣

∣Xi = X∗
i ∈ A; Yi = Y ∗

i ∈ B; −1 6 Xi, Yi 6 1

}where 1 is the unit element of C. For any Bell operator R the following an be proven:Theorem 1. For any state φ : C → C, one has |φ(R)| 6
√

2.Theorem 2. For separable states (i.e. for onvex ombinations of produt states) |φ(R)| 6 1.The Bell orrelation oe�ient of a state φ is de�ned as
β(φ,A,B) := sup

{

|φ(R)|
∣

∣R ∈ B(A,B)
}and the Bell inequality is said to be violated if β(φ,A,B) > 1, and maximally violated if β(φ,A,B) =√

2. An important result of Baiagaluppi (1994) is the following:Theorem 3. If A and B are C∗-algebras, then there are some states violating the Bell inequalityfor A⊗ B i� both A and B are non-abelian.Going over to von Neumann algebras Landau (1987) has shown that the maximal violation of theBell inequality is generi in the following sense:Theorem 4. LetN1 andN2 be von Neumann algebras, and suppose thatN1 is abelian andN1 ⊆ N ′
2(N ′ being the ommutant of N ). Then for any state β(φ,A,B) 6 1. On the other hand, ifboth N1 and N2 are non-abelian von Neumann algebras suh that N1 ⊆ N ′

2, and if (N1,N2)satis�es the Shlieder-property,1 then there is a state φ for whih β(φ,A,B) =
√

2.1The ommuting pair (A,B) of C∗-subalgebras in C obeys the Shlieder-property, if for 0 6= A ∈ A and 0 6= B ∈ B,
AB 6= 0. Sine in ase of von Neumann algebras A and B an be required to be projetions, Shlieder-property is theanalogue of logial independene in lassial logi. 3



Adding further onstraints on the von Neumann algebras one obtains other important results suhas the following two:Theorem 5. If N1 and N2 are properly in�nite2 von Neumann algebras on the Hilbert spae Hsuh that N1 ⊆ N ′
2, and (N1,N2) satis�es the Shlieder-property, then there is a dense set ofvetors in H induing states whih violate the Bell inequality aross (N1,N2) (Halvorson andClifton, 2000).Theorem 6. Let H be a separable Hilbert spae and let R be a von Neumann fator of type III1ating on H. Then every normal state φ of B(H) maximally violates the Bell inequality aross

(R,R′) (Summers and Werner, 1988).Type III fators featuring in Theorems 5-6. are the typial loal von Neumann algebras in AQFTwith loally in�nite degrees of freedom. Here we brie�y survey the basi notions of the theory.In AQFT observables (inluding quantum events) are represented by unital C∗-algebras assoiatedto bounded regions of a given spaetime. The assoiation of algebras and spaetime regions isestablished along the following lines.(i) Isotony. Let S be a spaetime. A double one in S is the intersetion of the ausal past of apoint x with the ausal future of a point y timelike to x. Let K be a olletion of double onesof S suh that (K,⊆) is a direted poset under inlusion ⊆. The net of loal observables isgiven by the isotone map K ∋ V 7→ A(V ) to unital C∗-algebras, that is V1 ⊆ V2 implies that
A(V1) is a unital C∗-subalgebra of A(V2). The quasiloal observable algebra A is de�ned to bethe indutive limit C∗-algebra of the net {A(V ), V ∈ K} of loal C∗-algebras.(ii) Miroausality. The net {A(V ), V ∈ K} satis�es miroausality (aka Einstein ausality):
A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spaelike omplement and algebra om-mutant, respetively. A(V ′) is the smallest C∗-algebra in A ontaining the loal algebras
A(Ṽ ),K ∋ Ṽ ⊂ V ′.(iii) Covariane. Let PK be the subgroup of the group P of geometri symmetries of S leavingthe olletion K invariant. A group homomorphism α : PK → AutA is given suh that theautomorphisms αg, g ∈ PK of A at ovariantly on the observable net: αg(A(V )) = A(g ·
V ), V ∈ K.To the net {A(V ), V ∈ K} satisfying the above requirements we will refer to as a PK-ovariantloal quantum theory. If S = M is the Minkowski spaetime and K is the net of all double ones then

PK is the Poinaré group, and we obtain Poinaré ovariant algebrai quantum �eld theories withloally in�nite degrees of freedom. Restriting the olletion K one an obtain PK-ovariant loalquantum theories with loally �nite degrees of freedom, for instane our example, the loal quantumIsing model (see below).A state φ in a loal quantum theory is de�ned as a normalized positive linear funtional on thequasiloal observable algebra A. The orresponding GNS representation πφ : A → B(Hφ) onvertsthe net of C∗-algebras into a net of C∗-subalgebras of B(Hφ). Closing these subalgebras in the weaktopology one arrives at a net of loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.Von Neumann algebras are generated by their projetions, whih are alled quantum events sinethey an be interpreted as 0-1�valued observables. The expetation value of a projetion is theprobability of the event that the observable takes on the value 1 in the appropriate quantum state.Two ommuting quantum events A and B are said to be orrelating in a state φ if
φ(AB) 6= φ(A)φ(B).2The enter ontains no �nite projetions. 4



If the events are supported in spatially separated spaetime regions VA and VB , respetively, then theorrelation between them is said to be superluminal. To see that superluminal orrelations violatingBell inequalities abound in Poinaré ovariant algebrai quantum �eld theories, one has to introduefurther requirements on the representations of A (see Haag 1992):(iv) Unitary implementability. There is a strongly ontinuous unitary representation of the Poinarégroup, U : P → B(Hφ), suh that
πφ(αg(A)) = U(g)πφ(A)U(g)∗, A ∈ A, g ∈ P .(v) Vauum ondition. There is a (up to a salar) unique vetor Ω in the Hilbert spae H0orresponding to the vauum state φ0 suh that U(g)Ω = Ω for all g ∈ P .(vi) Spetrum ondition. The spetrum of the self-adjoint generators of the strongly ontinuousunitary representation of the translation subgroup R

4 of P lies in the losed forward lightone.(vii) Weak additivity. For any nonempty open region V , the set of operators ∪g∈R4N (g ·V ) is densein B(H0) (in the weak operator topology).Now, under onditions (i)-(vii) the loal von Neumann algebras supported in spaelike separateddouble ones satisfy the Shlieder property (Shlieder, 1969). Therefore Theorem 4 applies to thesealgebras stating that there is a state maximally violating the Bell inequality aross these loalalgebras. Moreover, if the net is non-trivial3, then the loal von Neumann algebras are properlyin�nite. This makes Theorem 5 appliable to loal von Neumann algebras supported in spaelikeseparated double ones stating that there is a dense set of vetors in H induing states whih violatethe Bell inequality.Being properly in�nite the von Neumann algebras annot be of type In and II1 but they still anbe of type I∞ or II∞ . However, a set of independent results indiates that the loal von Neumannalgebras are of type III, more spei�ally hyper�nite4 fators of type III1. Buhholz et al. (1987)proved that the loal algebras for relativisti free �elds are type III1 and it was also shown thatone an onstrut the loal von Neumann algebras as a unique type III1 hyper�nite fator from theunderlying Wightman theory by adding the assumption of saling limit (see (Fredenhagen (1985)).Instead of deriving the type of the von Neumann algebras from more general physial require-ments, one also an expliitely add this ondition as a new axiom of AQFT:(viii) The type of the algebras. For every double one V the von Neumann algebra N (V ) is of type
III1.Under onditions (i)-(viii) the loal von Neumann algebras supported in spaelike separeted doubleones satisfy the assumptions of Theorem 6, therefore every normal state will maximally violate theBell inequality aross pairs of algebras supported in spaelike separated double ones.Finally, we mention a physially important onsequene of Theorem 6:Theorem 7. The vauum state maximally violates the Bell inequality aross the wedge5 algebras
(N (W ),N (W )′). (Summers, Werner 1988).As said above, the Bell inequality typially used in AQFT is of the following form:

∣

∣φ
(

X1(Y1 + Y2) +X1(Y1 − Y2)
)∣

∣ 6 2, (1)3For eah double one V , A(V ) 6= C1.4The weak losure of an asending sequene of �nite dimensional algebras.5Poinaré transforms of the region WR := {x ∈ M|x1 > |x0|}.5



where Xm ∈ N (VA) and Yn ∈ N (VB) are self-adjoint ontrations (that is −1 6 Xm, Yn 6 1 for
m,n = 1, 2) supported in spatially separated spaetime regions VA and VB , respetively. This typeof Bell inequality is usually referred to as the Clauser�Horne�Shimony�Holte (CHSH) inequality(Clauser, Horne, Shimony and Holt, 1969). Sometimes in the EPR-Bell literature another Bell-typeinequality is used instead of (1): the Clauser�Horne (CH) inequality (Clauser and Horne, 1974)de�ned in the following way:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0, (2)where Am and Bn are projetions loated in N (VA) and N (VB), respetively. It is easy to see,however, that the two inequalities are equivalent: in a given state φ the set {(Am, Bn);m,n = 1, 2}violates the CH inequality (2) if and only if the set {(Xm, Yn);m,n = 1, 2} of self-adjoint ontrationsgiven by
Xm := 2Am − 1 (3)
Yn := 2Bn − 1 (4)violates the CHSH inequality (1). Therefore, from now on we will onentrate only on the CH-typeBell inequalities.In the next two setions we turn to the ommon ausal explanation behind the Bell inequalities.In the next Setion we introdue the basi notions of the lassial ommon ausal explanation leadingto the Bell inequalities; in the subsequent Setion we generalize these notions for the quantum ase.3 Classial ommon ausal explanationLet us begin with Hans Reihenbah's (1956) original de�nition whih is historially the �rst prob-abilisti haraterization of the notion of the ommon ause. Let (Ω,Σ, p) be a lassial probabilitymeasure spae and let A and B be two positively orrelating events in Σ:

p(A ∧B) > p(A) p(B). (5)De�nition 1. An event C ∈ Σ is said to be the Reihenbahian ommon ause of the orrelationbetween events A and B if the following onditions hold:
p(A ∧B|C) = p(A|C)p(B|C) (6)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (7)
p(A|C) > p(A|C⊥) (8)
p(B|C) > p(B|C⊥) (9)where C⊥ denotes the orthoomplement of C and p( · | · ) is the onditional probability de�ned bythe Bayes rule. One refers to equations (6)-(7) as the sreening-o� onditions and to inequalities(8)-(9) as the positive statistial relevany onditions.Reihenbah's de�nition, however, annot be applied diretly to AQFT for four reasons. First, thepositive statistial relevany onditions restrit one to ommon auses whih inrease the probabilityof their e�ets; or in other words, they exlude negative auses. Seond, the de�nition also exludessituations in whih the orrelation is not due to a single ause but to a system of ooperatingommon auses. Third, it is silent about the spatiotemporal loalization of the events. Fourth andmost importantly, it is lassial.Let us �rst address the �rst two problems. Let A and B be two orrelating events in a lassialprobability measure spae (Ω,Σ, p) that is
p(A ∧B) 6= p(A) p(B). (10)6



De�nition 2. A partition {Ck}k∈K in Σ is said to be the ommon ause system of the orrelation(10) if the following sreening-o� ondition holds for all k ∈ K:
p(A ∧B|Ck) = p(A|Ck) p(B|Ck), (11)where |K|, the ardinality of K is said to be the size of the ommon ause system. A ommon ausesystem of size 2 is alled a ommon ause (without the adjetive `Reihenbahian', indiating thatthe inequalities (8)-(9) are not required).Conerning the third problem, namely, the loalization of the ommon ause, one has (at least)three di�erent options. Suppose that the two events A and B are loalized in two bounded andspatially separated regions VA and VB of a spaetime S. Then one an loalize {Ck} either (i)in the union or (ii) in the intersetion of the ausal past of the regions VA and VB; or (iii) morerestritively, in the spaetime region whih lies in the intersetion of ausal pasts of every point of

VA ∪ VB . Formally, we have
wpast(VA, VB) := I−(VA) ∪ I−(VB)

cpast(VA, VB) := I−(VA) ∩ I−(VB)

spast(VA, VB) := ∩x∈VA∪VB
I−(x)where I−(V ) denotes the union of the bakward light ones i.e. the ausal pasts I−(x) of everypoint x in V (Rédei, Summers 2007). We will refer to the above three pasts in turn as the weakpast, ommon past, and strong past of A and B, respetively (see Fig. 1). The notion of these pastspresupposes a spaetime loalization struture of the lassial event algebra. (For suh an attemptsee (Henson, 2005).)
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Figure 1: Possible loalizations of the ommon ause system in di�erent pasts of VA and VB.Now, suppose that we do not fae one orrelation (A,B) but a set of orrelations that is events
Am and Bn in Σ suh that for any m ∈M,n ∈ N

p(Am ∧Bn) 6= p(Am) p(Bn). (12)If our aim is to explain all of these pair-orrelations {(Am, Bn);m ∈M,n ∈ N} by a single ommonause system, then we are led to the following de�nition:De�nition 3. A partition {Ck}k∈K in Σ is said to be a joint6 ommon ause system of the set oforrelations {(Am, Bn);m ∈M,n ∈ N} if the following sreening-o� ondition holds for all m ∈M ,
n ∈ N , and k ∈ K:

p(Am ∧Bn|Ck) = p(Am|Ck) p(Bn|Ck). (13)6In (Hofer-Szabó and Vesernyés, 2012a,b) alled ommon ommon ause system.7



Obviously, for a set of orrelations to have a joint ommon ause system is muh more demandingthan to simply have a separate ommon ause system for eah orrelation.Now, let us ompliate the piture a little further by introduing onditional probabilities. Supposethat events Am and Bn are outomes of measurements of the observables Am and Bn, respetively.Let am and bn, respetively denote the events that the appropriate measurement devies are setto measure the observables Am and Bn, respetively. Let us refer to these events as measurementhoies. To be more spei�, suppose that eah measurement hoie am in region VA an yieldonly two outomes Am and A⊥
m, and similarly the measurement hoies bn in region VB an againyield only two outomes Bn and B⊥

n . Finally, suppose that probability of the di�erent measurementhoies am in region VA add up to 1, and similarly for the measurement hoies bn in region VB .Now, the events Am and Bn are said to be orrelating in the onditional sense if for all Am, Bn,
am, bn ∈ Σ (m ∈M,n ∈ N) the following holds:

p(Am ∧Bn | am ∧ bn) 6= p(Am|am ∧ bn) p(Bn|am ∧ bn). (14)What does a joint ommon ausal explanation of these onditional orrelations onsists in? Theanswer to this question is given in the following de�nition:De�nition 4. A loal, non-onspiratorial joint ommon ausal explanation of the onditional or-relations (14) onsists in providing a partition {Ck} in Σ suh that for any m,m′ ∈M,n, n′ ∈ N thefollowing requirements hold:
p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧Ck) (sreening-o�) (15)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧Ck) (loality) (16)
p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧Ck) (loality) (17)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-onspiray) (18)The motivation behind requirements (15)-(18) is the following. Sreening-o� (15) is simply theappliation of the notion of ommon ause for onditional orrelations: although Am and Bn areorrelating onditioned on am and bn, they will ease to do so if we further ondition on {Ck}.Loality (16)-(17) is the natural requirement that the measurement outome on the one side shoulddepend only on the measurement hoie on the same side and the value of the ommon ause butnot on the measurement hoie on the opposite side. Finally, no-onspiray (18) is the requirementthat the ommon ause system and the measurement hoies should be probabilistially independent.(For the justi�ation of the above requirements by Causal Markov Condition see (Glymour, 2006).)Let us now proeed further. A straightforward onsequene of De�nition 4 is the following proposition(Clauser, Horne, 1974):Proposition 1. Let Am, Bn, am and bn (m,n = 1, 2) be eight events in a lassial probabilitymeasure spae (Ω,Σ, p) suh that the pairs {(Am, Bn);m,n = 1, 2} orrelate in the onditional senseof (14). Suppose that {(Am, Bn);m,n = 1, 2} has a loal, non-onspriratorial joint ommon ausalexplanation in the sense of De�nition 4. Then for anym,m′, n, n′ = 1, 2;m 6= m′;n 6= n′ the followinglassial Clauser�Horne inequality holds:
−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′) − p(Am|am ∧ bn) − p(Bn|am ∧ bn) 6 0 (19)Proof. It is an elementary fat of arithmeti that for any α, α′, β, β′ ∈ [0, 1] the number
αβ + αβ′ + α′β − α′β′ − α− β (20)8



lies in the interval [−1, 0]. Now let α, α′, β, β′ be the following onditional probabilities:
α := p(Am|am ∧ bn ∧Ck) (21)
α′ := p(Am′ |am′ ∧ bn′ ∧ Ck) (22)
β := p(Bn|am ∧ bn ∧ Ck) (23)
β′ := p(Bn′ |am′ ∧ bn′ ∧ Ck) (24)Plugging (21)-(24) into (20) and using loality (16)-(17) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am ∧ bn′ ∧ Ck)p(Bn′ |am ∧ bn′ ∧ Ck)

+p(Am′ |am′ ∧ bn ∧Ck)p(Bn|am′ ∧ bn ∧ Ck) − p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck) − p(Bn|am ∧ bn ∧ Ck) 6 0 (25)Using sreening-o� (15) one gets
−1 6 p(Am ∧Bn|am ∧ bn ∧Ck) + p(Am ∧Bn′ |am ∧ bn′ ∧Ck) + p(Am′ ∧Bn|am′ ∧ bn ∧Ck)

−p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck) − p(Am|am ∧ bn ∧ Ck) − p(Bn|am ∧ bn ∧ Ck) 6 0 (26)Multiplying the above inequality by p(Ck), using no-onspiray (18) and summing up for the index
k one obtains
−1 6

∑

k

(

p(Am ∧Bn ∧ Ck|am ∧ bn) + p(Am ∧Bn′ ∧ Ck|am ∧ bn′) + p(Am′ ∧Bn ∧ Ck|am′ ∧ bn)

−p(Am′ ∧Bn′ ∧ Ck|am′ ∧ bn′) − p(Am ∧Ck|am ∧ bn) − p(Bn ∧ Ck|am ∧ bn)
)

6 0 (27)Finally, applying the theorem of total probability
∑

k

p(Y ∧ Ck) = p(Y )one arrives at (19) whih ompletes the proof.Proposition 1 plays a ruial role in understanding the CH inequality (19). It provides, so tosay, a `lassial ommon ausal justi�ation' of the lassial CH inequality by showing that (19) is aneessary ondition for the existene of a loal, non-onspriratorial joint ommon ausal explanationfor a set of onditional orrelations.The well-known situation in whih the lassial CH inequality (19) is violated and hene the or-relations in question have no loal, non-onspriratorial joint ommon ausal explanation, is theEPR-Bohm senario. Consider a pair of spin- 1
2
partiles prepared in the singlet state (see Fig. 2).Let am (m = 1, 2) denote the event that the measurement apparatus is set to measure the spin

Figure 2: EPR�Bohm setup for spin- 1
2
partiles9



in diretion ~am in the left wing; and let p(am) stand for the probability of am. Let bn (n = 1, 2)and p(bn) respetively denote the same for diretion ~bn in the right wing. (Note that m = n doesnot mean that ~am and ~bn are parallel diretions.) Furthermore, let p(Am) stand for the probabilitythat the spin measurement in diretion ~am in the left wing yields the result `up' and let p(Bn) bede�ned in a similar way in the right wing for diretion ~bn. Aording to the statistial algorithmof quantum mehanis the onditional probability of getting an `up' result provided we measure thespin in diretion ~am in the left wing; getting an `up' result provided we measure the spin in diretion
~bn in the right wing; and getting `up-up' result provided we measure the spin in both diretions ~amand ~bn are given by the following relations:

p(Am|am ∧ bn) =
1

2
(28)

p(Bn|am ∧ bn) =
1

2
(29)

p(Am ∧Bn|am ∧ bn) =
1

2
sin2

(

θambn

2

) (30)where θambn
denotes the angle between diretions ~am and ~bn. For non-perpendiular diretions ~amand~bn (28)-(30) predit onditional orrelations spei�ed in (14). Now, in order to provide a lassialloal, non-onspiratorial joint ommon ausal explanation for these orrelations, the onditionalprobabilities (28)-(30) have to satisfy the lassial CH inequality (19). Sine for appropriate hoieof the measurement diretions this inequalitity is violated, EPR orrelations annot be given alassial loal, non-onspiratorial joint ommon ausal explanation.Observe that up to this point everything has been lassial. Quantum mehanis (QM) was simplyused to generate lassial onditional probabilities by the Born rule. These onditional probabilities,however, ould also have been diretly obtained from the laboratory and in the atual experimentsthey are gained in this diret way indeed. So it is ompletely satisfatory to interpret the EPRsenario�in aord with the quote from Gisin in the Introdution�as a lassial situation withlassial onditional orrelation (between detetor liks) violating the lassial CH inequality (19)(see (Szabó 1998)).But this is not the standard interpretation. The standard way to desribe the above EPRsituation is to adopt another mathematial formalism, the formalism of quantum theory. Hereevents are represented as projetions of the von Neumann lattie of the tensor produt matrixalgebraM2(C)⊗M2(C) and probabilities are gained by the quantum states. So instead of (28)-(30)one writes the following:

φs(Am) = Tr
(

ρs (Am ⊗ 1B)
)

=
1

2
(31)

φs(Bn) = Tr
(

ρs (1A ⊗Bn)
)

=
1

2
(32)

φs(AmBn) = Tr
(

ρs (Am ⊗Bn)
)

=
1

2
sin2

(

θambn

2

) (33)where Am and Bn denote projetions onto the eigensubspaes with eigenvalue + 1

2
of the spin oper-ators assoiated with diretions ~am and ~bn, respetively, and φs( · ) = Tr(ρs · ) is the singlet state.Moreover, if we go over to AQFT, these projetions will be loalized in a well-de�ned spaetimeregion.Substituting the non-lassial probabilities (31)-(33) into the non-lassial CH inequality (2)de�ned in the Introdution one �nds a violation of this inequality for appropriate hoies of theprojetions Am, Bn. But what does it mean? First, it is important to be aware of the fat that now10



we adopt another theory to aount for orrelations. But then we need to take the onsequenes ofthis move seriously. This means that we need to represent every event of the model as projetionsof a von Neumann algebra. Among them ommon auses! So the following questions arise: Can thelassial notion of the ommon ause (system) generalized for the non-lassial ase? What is therelation of this non-lassial notion of ommon ause to the non-lassial CH inequality (2)? Doesthere exist a non-lassial ommon ausal justi�ation of the Bell inequalities used in AQFT similarto the lassial one?As it will turn out soon, one an generalize the notion of the ommon ause also for the alge-brai quantum �eld theoretial setting, and one an also give a preise de�nition of a loal, non-onspiratorial joint ommon ausal explanation of a set of orrelations in AQFT. However, it alsowill turn out that there is no diret relation between this ommon ausal explanation and the Bellinequalities. Or to put it brie�y, orrelation violating the Bell inequality an still have a loal, non-onspiratorial joint ommon ausal explanation. In order to see all these, �rst we have to generalizethe notions of this Setion to the quantum ase.4 Non-lassial ommon ausal explanationLet us �rst generalize the notion of the ommon ause system to the quantum ase in the followingway. Replae the lassial probability measure spae (Ω,Σ, p) by the non-lassial probability mea-sure spae (N ,P(N ), φ) where P(N ) is the (non-distributive) lattie of projetions (events) and φis a state of a von Neumann algebra N . We note that in ase of projetion latties we will use onlyalgebra operations (produts, linear ombinations) instead of lattie operations (∨,∧). In ase ofommuting projetions A,B ∈ P(N ) lattie operations an be given in terms of algebrai operations.A set of mutually orthogonal projetions {Ck}k∈K ⊂ P(N ) is alled a partition of the unit 1 ∈ Nif ∑

k Ck = 1. Two ommuting projetions A and B ∈ P(N ) are said to be orrelating in the state
φ : N → C if

φ(AB) 6= φ(A)φ(B). (34)Sine φ is linear, a kind of `theorem of total probablity', ∑

i φ(APi) = φ(A
∑

i Pi) = φ(A), holds forany partition {Pi} of the unit, hene (34) is equivalent to
φ(AB)φ(A⊥B⊥) 6= φ(AB⊥)φ(A⊥B). (35)Now, following the lines of De�nition 2 one an haraterize the non-lassial ommon ause systemof the orrelation (34) as a sreener-o� partition of the unit. To make the de�nition meaningful wehave to introdue the following onditional expetation Ec : N → C:

Ec(A) :=
∑

k∈K

CkACk, (36)where {Ck}k∈K is a partition of the unit of N (Umegaki, 1954). The image C of this map is aunital subalgebra of N ontaining exatly those elements that ommute with Ck, k ∈ K. There-fore, Ec(A)Ck = Ec(ACk) = CkACk (A ∈ N , k ∈ K) for example. By means of this onditionalexpetation we an de�ne the notion of the ommon ause system in the non-lassial ase:De�nition 5. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be the ommon ause system ofthe ommuting events A,B ∈ P(N ), whih orrelate in the state φ : N → C, if for those k ∈ K forwhih φ(Ck) 6= 0, the following ondition holds:
(φ ◦ Ec)(ABCk)

φ(Ck)
=

(φ ◦Ec)(ACk)

φ(Ck)

(φ ◦ Ec)(BCk)

φ(Ck)
. (37)11



If Ck ommutes with both A and B for all k ∈ K, we all {Ck}k∈K a ommuting ommon ausesystem, otherwise a nonommuting one. A ommon ause system of size |K| = 2 is alled a ommonause.Some remarks are in plae here. First, using the `theorem of total probability' the ommon auseondition (37) an be written as
(φ ◦ Ec)(ABCk)) (φ ◦Ec)(A

⊥B⊥Ck) = (φ ◦ Ec)(AB
⊥Ck) (φ ◦ Ec)(A

⊥BCk), k ∈ K. (38)One an even allow here the ase φ(Ck) = 0, sine then both sides of (38) are zero.Seond, the non-lassial harater of the ommon ause system of De�nition 5 lies in the fatthat the ommon ause system need not ommute with the orrelating events. If the events Aand B ommute with Ck, k ∈ K, then not only Ck ∈ C but also A,B,A⊥, B⊥ ∈ C, and therefore
Ec(ABCk) = ABCk, for example. Thus, the onditional expetation Ec vanishes from the de�ningequation (37); and (38) leads to

φ(ABCk)φ(A⊥B⊥Ck) = φ(AB⊥Ck)φ(A⊥BCk). (39)Finally, it is obvious from (39) that if Ck ≤ X with X = A,A⊥, B or B⊥ for any k ∈ Kthen {Ck}k∈K serve as a ommon ause system (and hene a ommuting ommon ause system)of the given orrelation independently of the hosen state φ. These solutions are alled trivialommon ause systems. In ase of ommon ause, |K| = 2, triviality means that {Ck} = {A,A⊥} or
{Ck} = {B,B⊥}.Having generalized the notion of the ommon ause system for the quantum ase, the next stepis to loalize it. Suppose that the projetion A is loalized in the algebra A(VA) with support VAand the projetion B is loalized in the algebra A(VB) with support VB suh that V ′′

A and V ′′
B arespaelike separated double ones in a spaetime S. A ommon ause system {Ck}k∈K is said to bea ommuting/nonommuting (strong/weak) ommon ause system of the orrelation between A and

B if {Ck}k∈K is loalizable in an algebra A(VC) with support VC suh that VC is in cpast(VA, VB)(spast(VA, VB)/wpast(VA, VB)).In the same vein, we obtain the de�nition of the joint ommon ause system in the non-lassialase. Let {(Am, Bn);m ∈ M,n ∈ N} be a set of pairs of ommuting projetions orrelating in thesense that
φ(AmBn) 6= φ(Am)φ(Bn). (40)De�nition 6. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a joint ommon ause systemof the set {(Am, Bn);m ∈ M,n ∈ N} of ommuting pairs of orrelating events, if for any k ∈ K,when φ(Ck) 6= 0, the onditions

(φ ◦ Ec)(AmBnCk)

φ(Ck)
=

(φ ◦ Ec)(AmCk)

φ(Ck)

(φ ◦ Ec)(BnCk)

φ(Ck)
, m ∈M,n ∈ N (41)hold, where Ec is the onditional expetation de�ned in (36). Again, if {Ck}k∈K ommutes with Amand Bn for all m ∈M,n ∈ N , then we all it a ommuting joint ommon ause system, otherwise anonommuting one.Equation (41) an again be understood in the more permissive way as

(φ ◦ Ec)(AmBnCk)) (φ ◦ Ec)(A
⊥
mB

⊥
n Ck) = (φ ◦ Ec)(AmB

⊥
n Ck) (φ ◦ Ec)(A

⊥
mBnCk) (42)inorporating ases when φ(Ck) = 0.And here omes a subtle point. Having introdued the notion of the joint ommon ause systemof a orrelation in the preeding Setion we went over to onditional orrelations and de�ned a loal,12



non-onspriratorial ommon ausal explanation of these orrelations. What is the analogue move inthe non-lassial ase? We laim that we need not introdue any new onept; the de�nition of aloal, non-onspriratorial ommon ause system in the non-lassial ase is just idential to the onegiven in De�nition 6 that is to the de�nition of the joint ommon ause system. For the details seethe Appendix (and (Butter�eld 1995)). So from now on we drop the pre�x `loal, non-onspiratorial'before the term `joint ommon ause system' in the non-lassial ase.Now, we are able to ask whether there is a proposition similary to Proposition 1 in the non-lassialase, that is whether one an derive a CH inequality (2) from the fat that the set of orrelatingprojetions {(Am, Bn);m ∈ M,n ∈ N} has a joint ommon ausal explanation? The followingproposition provides a su�ient ondition.Proposition 2. Let Am ∈ A(VA) and Bn ∈ A(VB) (m,n = 1, 2) be four projetions loalized inspaelike separated spaetime regions VA and VB , respetively, whih orrelate in the loally faithfulstate φ in the sense of (40). Suppose that {(Am, Bn);m,n = 1, 2} has a joint ommon ausalexplanation in the sense of De�nition 6. Then for any m,m′, n, n′ = 1, 2;m 6= m′;n 6= n′ the CHinequality
−1 6 (φ ◦ Ec)(AmBn +AmBn′ +Am′Bn −Am′Bn′ −Am −Bn) 6 0. (43)holds for the state φ ◦ Ec. If the joint ommon ause is a ommuting one, then the CH inequalityholds for the original state φ:

−1 6 φ(AmBn +AmBn′ +Am′Bn −Am′Bn′ − Am −Bn) 6 0. (44)Proof. Substituting the expressions
α :=

(φ ◦ Ec)(AmCk)

φ(Ck)
(45)

α′ :=
(φ ◦ Ec)(Am′Ck)

φ(Ck)
(46)

β :=
(φ ◦ Ec)(BnCk)

φ(Ck)
(47)

β′ :=
(φ ◦ Ec)(Bn′Ck)

φ(Ck)
(48)into the inequality

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0and using (41) we get
−1 6

(φ ◦ Ec)(AmBnCk)

φ(Ck)
+

(φ ◦ Ec)(AmBn′Ck)

φ(Ck)
+

(φ ◦ Ec)(Am′BnCk)

φ(Ck)

− (φ ◦ Ec)(Am′Bn′Ck)

φ(Ck)
− (φ ◦ Ec)(AmCk)

φ(Ck)
− (φ ◦ Ec)(BnCk)

φ(Ck)
6 0. (49)Multiplying the above inequality by φ(Ck) and summing up for the index k one obtains

−1 6
∑

k

(

(φ ◦ Ec)(AmBnCk) + (φ ◦ Ec)(AmBn′Ck) + (φ ◦ Ec)(Am′BnCk)

−(φ ◦ Ec)(Am′Bn′Ck) − (φ ◦ Ec)(AmCk) − (φ ◦ Ec)(BnCk)

)

6 0, (50)13



whih leads to (43) by performing the summation. If {Ck}k∈K is a ommuting joint ommon ausesystem, then Ec drops out from the above expression sine all the arguments are in C (see the remarkbefore (38)). Therefore (50) beomes idential to (44), whih ompletes the proof.First note that similarly to Proposition 1, neither Proposition 2 refers to the spaetime loalizationof {Ck} in a diret way. Indiretly, however, it restrits the loalization of the possible joint ommonause systems for states violating the CH inequality (44): the support of {Ck} must interset theunion of the ausal past or the ausal future of VA ∪ VB . It is so beause otherwise the support of
{Ck}k∈K would be spaelike separated from those of A and B, and hene {Ck} would be a ommutingjoint ommon ause system for a set of orrelations violating the CH inequality (44), in ontraditionwith Proposition 2.Proposition 2�similarly to Proposition 1�provides a ommon ausal justi�ation of the CHinequality (44). It states that in order to yield a ommuting joint ommon ausal explanation forthe set {(Am, Bn);m,n = 1, 2} the CH inequality (44) has to be satis�ed. But what is the situationwith nonommuting ommon ause systems? Sine�apart from (43)�Proposition 2 is silent aboutthe relation between a nonommuting joint ommon ausal explanation and the CH inequality (44),the question arises: Can a set of orrelations violating the CH inequality (44) have a nonommutingjoint ommon ausal explanation? Before addressing this question, we pose an easier one: Can asingle orrelation have a ommon ausal explanation in AQFT? This leads us over to the questionof the validity of the Common Cause Priniples in AQFT.5 Common Cause Priniples in algebrai quantum �eld theoryReihenbah's Common Cause Priniple (CCP) is the following hypothesis: If there is a orrelationbetween two events and there is no diret ausal (or logial) onnetion between the orrelatingevents, then there exists a ommon ause of the orrelation. The preise de�nition of this informalstatement that �ts to the algebrai quantum �eld theoretial setting is the following:De�nition 7. A PK-ovariant loal quantum theory {A(V ), V ∈ K} is said to satisfy the Commu-tative/Nonommutative (Weak/Strong) Common Cause Priniple if for any pair A ∈ A(V1) and
B ∈ A(V2) of projetions supported in spaelike separated regions V1, V2 ∈ K and for every loallyfaithful state φ : A → C establishing a orrelation between A and B, there exists a nontrivialommuting/nonommuting ommon ause system {Ck}k∈K ⊂ A(V ), V ∈ K of the orrelation (34)suh that the loalization region V is in the (weak/strong) ommon past of V1 and V2.What is the status of these six di�erent notions of the Common Cause Priniple in AQFT?The question whether the Commutative Common Cause Priniples are valid in a Poinaré o-variant loal quantum theory in the von Neumann algebrai setting was �rst raised by Rédei (1997,1998). As an answer to this question, Rédei and Summers (2002, 2007) have shown that the Commu-tative Weak CCP is valid in algebrai quantum �eld theory with loally in�nite degrees of freedom.Namely, in the von Neumann setting they proved that for every loally normal and faithful stateand for every superluminally orrelating pair of projetions there exists a weak ommon ause, thatis a ommon ause system of size 2 in the weak past of the orrelating projetions. They have alsoshown (Rédei and Summers, 2002, p 352) that the loalization of a ommon ause C < AB annot berestrited to wpast(V1, V2)\I−(V1) or wpast(V1, V2)\I−(V2) due to logial independene of spaelikeseparated algebras.Conerning the Commutative (Strong) CCP less is known. If one also admits projetions loalizedonly in unbounded regions, then the Strong CCP is known to be false: von Neumann algebraspertaining to omplementary wedges ontain orrelated projetions but the strong past of suh wedgesis empty (see (Summers andWerner, 1988) and (Summers, 1990)). In spaetimes having horizons, e.g.those with Robertson�Walker metri, the ommon past of spaelike separated bounded regions an14



be empty, although there are states whih provide orrelations among loal algebras orrespondingto these regions (Wald 1992).7 Hene, CCP is not valid there. Restriting ourselves to loal algebrasin Minkowski spaes the situation is not lear. We are of the opinion that one annot deide onthe validity of the (Strong) CCP without an expliit referene to the dynamis sine there is nobounded region V in cpast(V1, V2) (hene neither in spast(V1, V2)) for whih isotony would ensurethat A(V1 ∪ V2) ⊂ A(V ′′). But dynamis relates the loal algebras sine A(V1 ∪ V2) ⊂ A(V ′′ + t) =
αt(A(V ′′)) an be ful�lled for ertain V ⊆ V ′′ ⊂ cpast(V1, V2) and for ertain time translation by t.Coming bak to the proof of Rédei and Summers, the proof had a ruial premise, namely thatthe algebras in question are von Neumann algebras of type III. Although these algebras arise in anatural way in the ontext of Poinaré ovariant theories, other loal quantum theories apply vonNeumann algebras of other type. For example, theories with loally �nite degrees of freedom arebased on �nite dimensional (type I) loal von Neumann algebras. This raised the question whetherthe Commutative Weak CCP is valid in other loal quantum theories. To address the problem Hofer-Szabó and Vesernyés (2012a) have hosen the loal quantum Ising model (see Müller, Vesernyés)having loally �nite degrees of freedom. It turned out that the Commutative Weak CCP is not validin the loal quantum Ising model and it annot be valid either in theories with loally �nite degreesof freedom in general.But why should we require ommutativity between the ommon ause and its e�ets at all?Commutativity has a well-de�ned role in any quantum theories: observables should ommuteto be simultaneously measurable. In AQFT ommutativity of observables with spaelike separatedsupports is an axiom. To put it simply, ommutativity an be required for events whih an happen`at the same time'. But ause and e�et are typially not this sort of events. If one onsiders ordinaryQM, one well sees that observables do not ommute even with their own time translates in general.For example, the time translate x(t) := U(t)−1xU(t) of the position operator x of the harmoniosillator in QM does not ommute with x ≡ x(0) for generi t, sine in the ground state vetor ψ0we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (51)Thus, if an observable A is not a onserved quantity, that is A(t) 6= A, then the ommutator

[A,A(t)] 6= 0 in general. So why should the ommutators [A,C] and [B,C] vanish for the events
A,B and for their ommon ause C supported in their (weak/ommon/strong) past? We think thatommuting ommon auses are only unneessary reminisense of their lassial formulation. Due totheir relative spaetime loalization, that is due to the time delay between the orrelating events andthe ommon ause, it is also an unreasonable assumption.Abandoning ommutativity in the de�nition of the ommon ause is therefore a natural move.To our knowledge the �rst to ontemplate the possibility of the nonommuting ommon auses wereClifton and Ruetshe (1999) in their paper ritiizing Rédei (1997, 1998) who required ommutativityfrom the ommon ause. They say: �[requiring ommutativity℄ bars form andiday to the post ofommon ause the vast majority of events in the ommon past of events problematially orrelated� (p165). And indeed, the bene�t of allowing nonommuting ommon auses is that the nonommutativeversion of the result of Rédei and Summers an be regained: as it was shown in (Hofer-Szabó andVesernyés 2012b), by allowing ommon auses that do not ommute with the orrelating events,the Weak CCP an be proven in loal UHF-type quantum theories.Now, let us turn to our original question as to whether a set of orrelations violating the CHinequality (2) an have a nonommuting joint ommon ausal explanation in AQFT. Sine our answeris provided in an AQFT with loally �nite degrees of freedom, in the loal quantum Ising model,we give a short and non-tehnial tutorial to this model in the next Setion. (For more detail see(Hofer-Szabó, Vesernyés, 2012).)7We thank David Malament for alling our attention to this point and the paper of Wald.15



6 Nonommutative ommon auses for orrelations violatingthe CH inequalityConsider a `disretized' version of the two dimensional Minkowski spaetime M2 whih is omposedof minimal double onesOm(t, i) of unit diameter with their enter in (t, i) for t, i ∈ Z or t, i ∈ Z+1/2.The set {Om
i , i ∈ 1

2
Z} of suh minimal double ones with t = 0,−1/2 de�nes a `thikened' Cauhysurfae in this spaetime (see Fig. 3). The double one Om

i,j stiked to this Cauhy surfae is de�nedto be the smallest double one ontaining both Om
i and Om

j : Om
i,j := Om

i ∨ Om
j . Similarly, let

Om(t, i; s, j) := Om(t, i)∨Om(s, j). The direted set of suh double ones is denoted by Km, and thedireted subset of it whose elements are stiked to a Cauhy surfae is denoted by Km
CS . Obviously,

Km
CS will be left invariant by integer spae translations and Km will be left invariant by integer spaeand time translations.

1O OO0OO

1/2OO−1/2 O3/2O−3/2

−1−2

m m m m m

mmm m
2

Figure 3: A thikened Cauhy surfae in the two dimensional Minkowski spae M2The net of loal algebras is de�ned as follows. The `one-point' observable algebras assoiated tothe minimal double ones Om
i , i ∈ 1

2
Z are de�ned to be A(Om

i ) ≃ M1(C) ⊕M1(C). Between theunitary selfadjoint generators Ui ∈ A(Om
i ) one demands the following ommutation relations:

UiUj =

{

−UjUi, if |i− j| = 1

2
,

UjUi, otherwise. (52)Now, the loal algebras A(Oi,j),Oi,j ∈ Km
CS are linearly spanned by the monoms

Uki

i U
k

i+ 1
2

i+ 1
2

. . . U
k

j− 1
2

j− 1
2

U
kj

j (53)where ki, ki+ 1
2
. . . kj− 1

2
, kj ∈ {0, 1}.8Sine the loal algebras A(Oi,i− 1

2
+n), i ∈ 1

2
Z for n ∈ N are isomorphi to the full matrix algebra

M2n(C), the quasiloal observable algebra A is a uniformly hyper�nite (UHF) C∗-algebra and on-sequently there exists a unique (non-degenerate) normalized trae Tr : A → C on it. We note thatall nontrivial monoms in (53) have zero trae.In order to extend the `Cauhy surfae net' {A(O),O ∈ Km
CS} to the net {A(O),O ∈ Km}in a ausal and time translation ovariant manner one has to lassify ausal (integer valued) timeevolutions in the loal quantum Ising model. This lassi�ation was given in (Müller, Vesernyés)and it also was shown that the extended net satis�es isotony, Einstein ausality, algebrai Haag8For detailed Hopf algebrai desription of the loal quantum spin models see (Szlahányi, Vesernyés, 1993), (Nill,Szlahányi, 1997), (Müller, Vesernyés)). 16



duality
A(O′)′ ∩A = A(O), O ∈ Km, (54)

Z× Z ovariane with respet to integer time and spae translations and primitive ausality:
A(V ) = A(V ′′), (55)where V is a �nite onneted piee of a thikened Cauhy surfae (omposed of minimal doubleones). V ′′ denotes the double spaelike omplement of V , whih is the smallest double one in Kmontaining V . We will be interested here only in a speial subset of these ausal automorphismsgiven by:

β(Ux) = Ux− 1
2
UxUx+ 1

2
, x ∈ Z +

1

2
. (56)(In our following example we need not speify the hoie for β(Ux), x ∈ Z.) Now, onsider the doubleones OA := Om(0,−1) ∪ Om(1

2
,− 1

2
) and OB := Om(1

2
, 1

2
) ∪ Om(0, 1) and the `two-point' algebras

A(OA) and A(OB) pertaining to them. (See Fig. 4.) A linear basis of the algebra A(OA) is given
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Figure 4: Projetions in A(OA) and A(OB)by the monoms
1, U−1, β(U− 1

2
) ≡ U−1U− 1

2
U0, iU−1β(U− 1

2
) ≡ iU− 1

2
U0 (57)(where i in the fourth monom is the imaginary unit). They satisfy the same ommutation relationslike the Pauli matries σ0 = 1, σx, σy and σz in M2(C). Therefore, introduing the notation

U := (U−1, U−1U− 1
2
U0, iU− 1

2
U0) (58)any minimal projetion in A(OA) an be parametrized as

A(a) :=
1

2
(1 + aU) (59)where a = (a1, a2, a3) is a unit vetor in R

3. In the same vein, any minimal projetion in A(OB)an be paremetrized as
B(b) :=

1

2
(1 + bV) (60)17



where
V := (U1, −U0U 1

2
U1, iU0U 1

2
) (61)is the vetor omposed of the generators of A(OB) and b = (b1, b2, b3) is a unit vetor in R

3.The projetions A(a) and B(b) an be interpreted as the event loalized in A(OA) and A(OB),respetively pertaining to the generalized spin measurement in diretion a and b, respetively.Now, onsider two projetions Am := A(am);m = 1, 2 loalized in OA, and two other projetions
Bn := B(bn);n = 1, 2 loalized in the spaelike separated double one OB . Suppose that our systemis in the faithful state φ( · ) = Tr(ρ · ) where

ρ = ρ(λ) := 1 + λ
(

U−1U− 1
2
U 1

2
U1 − U−1U1 + U− 1

2
U 1

2

)

, λ ∈ [0, 1). (62)For λ = 1 the state de�ned by (62) gives us bak the usual singlet state. It is easy to see that in thestate (62) the orrelation between Am and Bn will be:
corr(Am, Bn) := φ(AmBn) − φ(Am)φ(Bn) = −λ

4
〈am,bn〉 (63)where 〈 , 〉 is the salar produt in R

3. In other words Am and Bn will orrelate whenever a
m and

b
n are not orthogonal. Now, if a

m and b
n are hosen as

a
1 = (0, 1, 0) (64)

a
2 = (1, 0, 0) (65)

b
1 =

1√
2
(1, 1, 0) (66)

b
2 =

1√
2
(−1, 1, 0) (67)the CH inequality (2) will be violated at the lower bound sine

φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− λ

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 + λ
√

2

2
, (68)whih is smaller than −1 if λ > 1√

2
. Or, equivalently, the CHSH inequality (1) where

Xm := 2Am − 1 (69)
Yn := 2Bn − 1 (70)will be violated for the above setting sine

φ(X1(Y1 + Y2) +X1(Y1 − Y2)) =

= −λ
(〈

a
1,b1 + b

2
〉

+
〈

a
2,b1 − b

2
〉)

= −λ2
√

2 (71)is smaller than −2 if λ > 1√
2
. Both the CH and the CHSH inequality are maximally violated for thesinglet state, that is if λ = 1.The question whether the four orrelations {(Am, Bn);m,n = 1, 2} violating the CH inequality(2) have a joint ommon ausal explanation was answered in (Hofer-Szabó, Vesernyés, 2012) bythe following 18



Proposition 3. Let Am := A(am) ∈ A(OA), Bn := B(bn) ∈ A(OB);m,n = 1, 2 be four projetionsde�ned in (59)-(60), where a
m and b

n are non-orthogonal unit vetors in R
3 establishing fourorrelations {(Am, Bn);m,n = 1, 2} in the state (62). Let furthermore C be any projetion loalizedin OC := O− 1

2
∨ O 1

2
∈ Km

CS (see Fig. 5.) of the shape
C =

1

4

(

1 + U− 1
2
U 1

2

)(

1 + c1U0 + c2U 1
2

+ c3iU0U 1
2

)

+
1

4

(

1 − U− 1
2
U 1

2

)(

1 + c′1U0 + c′2U 1
2

+ c′3iU0U 1
2

) (72)where c = (c1, c2, c3) and c
′ = (c′1, c

′
2, c

′
3) are arbitrary unit vetors in R

3. Then {C,C⊥} is a jointommon ause of the orrelations {(Am, Bn)} if am
3 b

n
3 = 0 for any m,n = 1, 2 and c2 = 0.
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Figure 5: Loalization of a ommon ause for the orrelations {(Am, Bn)}.Sine for the diretions a
m and b

n de�ned in (64)-(67) the requirement am
3 b

n
3 = 0 holds for any

m,n = 1, 2, therefore the orrelations (maximally) violating the CH/CHSH inequality do have ajoint ommon ause�any C of form (72) with c2 = 0.Finally, here is a Proposition (onsistently with the derivability of a CH inequality from theommuting joint ommon ause system) laiming that there exists no ommuting joint ommon ausefor these orrelations even without any restrition to their loalization (Hofer-Szabó, Vesernyés,2012):Proposition 4. Let Am ∈ A(OA), Bn ∈ A(OB);m,n = 1, 2 be projetions de�ned in (59)-(60) with
a
m and b

n given in (64)-(67). The orrelations {(Am, Bn);m,n = 1, 2} in the state (62) do not havea ommuting joint ommon ause {C1, C2} in A.Proposition 3 answers the question raised at the end of the last Setion as to whether there isa ommon ausal justi�ation of the CH inequalities in the general, that is in the nonommutingase. The answer to this question is learly no. The violation of the CH inequality for a givenset of orrelation does not prevent us from �nding a ommon ausal explanation for them. Allwe have to do is to extend our sope of searh and to embrae nonommuting ommon auses inthe ommon ausal explanation. So the Bell inequalities in the non-lassial ase do not play thesame role as in the lassial one. In the lassial ase there was a diret logial link between thepossibility of a ommon ausal explanation and the validity of the Bell inequalities; here the violationof the Bell inequalities exludes only a subset of the possible ommon ausal explanations ontainingthe ommuting ones. To put it di�erently, taking seriously the ontology of AQFT where events arerepresented by not neessarily ommuting projetions, one an provide a ommon ausal explanationin a muh wider range than simply stiking to ommutative ommon auses.19



7 On the meaning of nonommuting ommon ausesBut what are the onsequenes of applying nonommutative ommon auses? Let us see the storyfrom the beginning, going bak to Reihenbah's original de�nition of the ommon ause. TheReihenbahian ommon ause has the nie property that the presene of a ommon ause impliesa (positive) orrelation between the events in question. This fat is a simple onsequene of thefollowing identity:
p(A ∧B) − p(A) p(B) = p(C)p(C⊥)

[

p(A|C) − p(A|C⊥)
][

p(B|C) − p(B|C⊥)
]

. (73)It is straightforward to hek that if C is a Reihenbahian ommon ause ful�lling requirements(6)-(9) then the right hand side of (73) is positive therefore there is a positive orrelation between
A and B. In this sense the ommon ause provids a Hempelian explanation for the orrelation.9Going over to the notion of the ommon ause system this `explanatory fore' of the ommon ausedisappears: from the presene of the ommon ause (11) the orrelation (10) between A and B doesnot follow. (For an attempt to de�ne the notion of the ommon ause system suh that it preservesthis dedutive relation between the ommon ause system and the orrelation see (Hofer-Szabó andRédei 2004, 2006).)The nonommutative generalization of the ommon ause system is one step further into thediretion of relaxing the relation between the ommon ause and the orrelation. Here not only thededutive relation between the ommon ause and the orrelation gets lost, but also the relationbetween the onditioned and unonditioned probalitity of the orrelating events. Namely,

φ(A) = φc(A) := (φ ◦ Ec)(A) ≡
∑

k

(φ ◦ Ec)(ACk)

φ(Ck)
φ(Ck) (74)holds in general i� A = Ec(A), that is i� [A,Ck] = 0 for all k ∈ K. That is the state φc di�ers from

φ for A ∈ A\ ImEc in general, whih means that the statistis of A an di�er depending on whetherwe alutate it diretly from the state φ or as a weighted average of onditional probabilities overthe subensembles Ck.But then one might ome up with the following onern: Nonommuting ommon auses are notatual but only ontrafatual entities sine if the Ck-s had been realized, then we would have endedup with another probability (the right hand side of (74)) for the orrelating events than the atualones (the left hand side of (74)). So these ommon auses annot be realized in the same (atual)world in whih those event are aomodated whih they are supposed to explain.We do not onsider this objetion to be serious against the appliation of nonommuting ommonauses. An analogy between the notion of the ommon ause and the notion of the ause in QMmight help to illuminate why. An observable/event X an be said to be the ause of anotherobservable/event Y in QM, if X evolves in time into Y . But if X and Y do not ommute, thenhad X been earlier realized, the unitary dynamis would have been distorted, so X would not haveevolved into Y . Still, we regard X to be the ause of Y . Similarly, C is a ommon ause of A and
B if onditioned on it the orrelation between A and B disappears. If C does not ommute with Aand B, then had C been realized, the statistis would have been distorted, so the probability of A,
B and AB would be di�erent. Still, we think that C is the ommon ause.What is important to see here is that the de�nition of the ommon ause does not ontain therequirement (whih our lassialy informed intuition would ditate) that the onditional probabilites,when added up, should give bak the unonditional probabilities, that is φ = φc should ful�l. Or inother words, that the probability of the orrelating events should be built up from a �ner desriptionof the situation provided by the ommon ause. To put it in a more formal way: the theorem of9One is tempted to speulate that this desired property might just have been the reason why Reihenbah took upthe statistial relevany onditions (8)-(9) in the de�nition of the ommon ause.20



total probability is not part of the de�nition of the ommon ause.10 The de�ning property of theommon ause is simply the sreening-o�.So ommon auses might not be realized without the distortion of the statistis of the originalorrelating events. But this fat is ubiquitous for nonommuting observables in QM. If we toleratethis fat in general, then why not to tolerate it for ommon auses? As we have seen, allowing non-ommuting ommon auses helps us to maintain Bell's original intuition onerning loal ausality.8 ConlusionsIn the paper we saw that the Bell inequalities used in AQFT annot be given a ommon ausaljusti�ation similar to the lassial Bell inequalities if we allow nonommuting ommon auses inthe explanation. Just the opposite is true: for a set of orrelations violating the CH inequalities anonommutative ommon ausal explanation an be given and this ommon ause an be loalized inthe ommon past of the orrelating events. Thus, abandoning ommutativity gives us extra freedomin the searh of ommon auses for orrelations. But how big is this freedom? Is it big enough to�nd a ommon ause for any set of orrelations? We saw that for the worst andidate, so to say,for the set maximally violating the CH inequality we have found suh a ommon ause. But doesit mean that this strategy an be applied aross the board? What is the range of orrelations forwhih a joint ommon ausal explanation an be given? Is this range determined only by the size ofthe set of orrelations or by some other properties thereof? Is it true for example that for any �niteset of orrelations a weak joint ommon ausal explanation an always be given? Or to put it in amore formal way, an one always �nd a partition of the unit for any �nite set of orrelations suhthat the neessary ondition (43) for a joint ommon ausal explanation ful�lls? All these questionsare still open.Appendix: In what sense non-lassial joint ommon ause sys-tems are loal and non-onspiratorial?In Setion 4 we laimed that De�nition 6 of the joint ommon ause system is the orret non-lassialgeneralization of De�nition 4 of the (lassial) loal, non-onspiratorial joint ommon ause system.But how an the single non-lassial sreening-o� ondition (41) generalize not only the lassialsreening-o� ondition (15) but also the loality onditions (16)-(17) and non-onspiray (18)? Thisis the question we address in this Appendix.Let us �rst introdue a lassial probability measure pCk
on a ommon measure spae (Ω,Σ) forevery element of a lassial ommon ause system {Ck, k ∈ K}, if p(Ck) 6= 0:

pCk
(X |x) :=

p(X ∧Ck|x)
p(Ck)

. (75)With this denotation sreening-o� (15), loality (16)-(17), and no-onspiray (18) will read as
pCk

(Am ∧Bn|am ∧ bn) = pCk
(Am|am ∧ bn) pCk

(Bn|am ∧ bn), (76)
pCk

(Am|am ∧ bn) = pCk
(Am|am ∧ bn′), (77)

pCk
(Bn|am ∧ bn) = pCk

(Bn|am′ ∧ bn), (78)
pCk

(Ω|am ∧ bn) = 1, (79)10As it is not part of the de�nition of the ause either: if one measures X, one annot reonstrut the probabilityof a nonommuting Y from the onditional probabities over the subensembles pertaining to the outomes of X.21



if one uses no-onspiray (18) in the �rst three equations. The subsript Ck of the probabilitymeasure might remind the reader to the standard hidden variable approah where a parameter
λ is used to index a set of probability measures on a ommon event algebra. In this approahthe derivation of the Bell inequalities then proeeds through the summation/integration over thisparameter. In our opinion this indexial treatment of the ommon ause oneals an important fat,namely that the ommon ause and the orrelating events stand on the same ontologial footing: theyare all events, aomodated in a ommon event algebra with a single probability measure. Thereforethe index in (76)-(79) is simply an abbreviation of the onditionalization (75), whih abbreviationis motivated by trying to �nd a lassially equivalent form, where the non-lassialy meaninglessexpression am∧bn∧Ck of non-ommuting quantities an have a de�nite interpretation. (See below.)Now, how does the non-lassial De�nition 6 of the joint ommon ause system relate to theabove haraterization of a lassial loal, non-onspiratorial joint ommon ause system? The linkis provided by the (in our oppinion) orret interpretation of the non-lassial probabilities aordingto whih quantum probabilities are lassial onditional probabilities. The quantum probability φ(X)of a projetion X is to be interpreted as a onditional probability p(Xcl|xcl) of getting the outome
Xcl given the quantity xcl has been set to be measured. The preise mathematial formulation ofthis interpretation is given in the so-alled `Kolmogorovian Censorship Hyptothesis'. Here we juststate the proposition; for the proof see (Bana and Durt 1997), (Szabó 2001) and (Rédei 2010).Kolmogorovian Censorship Hypothesis. Let (N ,P(N ), φ) be a non-lassial probability spae.Let Γ be a ountable set of non-ommuting selfadjoint operators in N . For every Q ∈ Γ, let P(Q)be a maximal Abelian sublattie of P(N ) ontaining all the spetral projetions of Q. Finally, let amap p0 : Γ → [0, 1] be suh that

∑

Q∈Γ

p0(Q) = 1, p0(Q) > 0. (80)Then there exists a lassial probability spae (Ω,Σ, p) suh that for every projetion XQ in any
P(Q) there exist events XQ

cl and xQ
cl in Σ suh that

XQ
cl ⊂ xQ

cl (81)
xQ

cl ∩ xR
cl = 0, if Q 6= R (82)
p(xQ

cl) = p0(Q) (83)
φ(XQ) = p(XQ

cl |x
Q
cl) (84)The intuitive ontent of the above proposition is the following. A set of inompatible observablesrepresented by nonommuting selfadjoint operators in the set Γ are seleted for measurement with theprobabilities p0(Q) spei�ed in (80). This measurement and seletion proedure is then representedby lassial events XQ

cl and xQ
cl, respetively: XQ

cl represents a ertain measurement outome of themeasurement Q, and xQ
cl is the lassial event of setting up the measurement devie to measure

Q. Condition (81) expresses that no outome is possible without this setting up of a measuringdevie. Condition (82) expresses that inompatible observables Q and R annot be simultaneouslymeasured: the measurement hoies xQ
cl and xR

cl are disjoint events. Condition (83) states thatthe lassial probability model aptures the presribed probabilities p0(Q) as the probability of themeasurement hoies. Finally, ondition (84) is the entral relation of the Hypothesis, it states thatquantum probabilities an be written as lassial onditional probabilities: onditional probabilitiesof outomes of measurements on ondition that the appropriate measuring devie has been set up.Applying the above proposition to our ase,11 we obtain that the quantum probabilities φ(Am),11From now on, we will denote both the lassial event and the projetion representing it by the same symbol.However, the quantum state φ or the lassial probability p will always indiate in whih sense we use it.22



φ(Bn) and φ(AmBn) an be interpreted as lassial onditional probabilities p(Am|am), p(Bn|bn)and p(Am ∧ Bn|am ∧ bn), respetively, with Am, Bn, am and bn (m ∈ M,n ∈ N) aomodated in alassial probability spae (Ω,Σ, p). Hene the quantum orrelations
φ(AmBn) 6= φ(Am)φ(Bn) (85)between the elements of the set {(Am, Bn);m ∈M,n ∈ N} an be interpreted as onditional orre-lations

p(Am ∧Bn | am ∧ bn) 6= p(Am|am) p(Bn|bn) (86)between lassial measurement outome events onditioned on measurement hoie events in aor-dane with (14).To see the link between the lassial and non-lassial version of the ommon ause let us �rstintrodue a similar notation for the onditionalization on Ck in the non-lassial ase, if φ(Ck) 6= 0,as was introdued above in (75) for the lassial ase, that is let
φCk

(X) :=
(φ ◦ Ec)(XCk)

φ(Ck)
=
φ(CkXCk)

φ(Ck)
. (87)With this notation the de�nition of the non-lassial joint ommon ause system reads as follows:

φCk
(AmBn) = φCk

(Am)φCk
(Bn). (88)Using the Kolmogorovian Censorship Hypothesis the lassial interpretation of (88) is the following:

pCk
(Am ∧Bn|am ∧ bn) = pCk

(Am|am) pCk
(Bn|bn) (89)whih is almost the sreening-o� (76) exept that the onditions on the right hand side are not

am ∧ bn. This defet will be ured however by the loality onditions. Observe namely that sine
Am and Bn ommute, therefore

φCk
(Am) = φCk

(AmBn) + φCk
(AmB

⊥
n ) (90)

φCk
(Bn) = φCk

(AmBn) + φCk
(A⊥

mBn) (91)whih translated into lassial onditional probabilities due to the Kolmogorovian Censorship Hy-pothesis read as:
pCk

(Am|am) = pCk
(Am ∧Bn|am ∧ bn) + pCk

(Am ∧B⊥
n |am ∧ bn) = pCk

(Am|am ∧ bn) (92)
pCk

(Bn|bn) = pCk
(Am ∧Bn|am ∧ bn) + pCk

(A⊥
m ∧Bn|am ∧ bn) = pCk

(Bn|am ∧ bn) (93)Now, observe that (92)-(93) are equivalent to loality (77)-(78), so loality is `automatially' ful�lledfor the non-lassial ommon ause due to the ommutativity of Am and Bn. (This fat is sometimesreferred as the `no-signalling theorem'; for more on that see (Shlieder 1969).) Moreover (92)-(93)also ure the defet of (89), sine
pCk

(Am|am) pCk
(Bn|bn)on the right hand side of (89) an be replaed with

pCk
(Am|am ∧ bn) pCk

(Bn|am ∧ bn)turning (89) into the lassial sreening-o� property (76).23



Putting all this together, a non-lassial, loal, non-onspiratorial joint ommon ausal expla-nation of the orrelations (85) is a partition {Ck}k∈K ⊂ P(N ) if for any k ∈ K the followingrequirements hold:
φCk

(AmBn) = φCk
(Am)φCk

(Bn) (94)
φCk

(Am) = φCk
(AmBn) + φCk

(AmB
⊥
n ) (95)

φCk
(Bn) = φCk

(AmBn) + φCk
(A⊥

mBn) (96)
φCk
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