293 research outputs found
Effect of antimicrobial use on the resistance of Escherichia coli in faecal flora of pigs
The antimicrobial use in veterinary medicine is of concern because of possible transmisston of resistant bacteria to humans. However the relation between use and occurrence of resistance is poorly documented in the field. Sixteen farrow-to-fimsh herds were selected and classified on the frequency of antimicrobial administrations (low (LU), medium (MU) and high (HU) users). lndtcative Eschenchia coli strains were tsolated from faeces of sows (5 per herd) and young pigs (3 per sow) at several ttmes during animals\u27 hfe and tested for reststance to amoxicillin, gentamicin, trimethoprim-sulfamids and tetracyclin. The percentages of resistant strams were compared between herd groups
The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica
The ASTEP (Antarctica Search for Transiting ExoPlanets) program was
originally aimed at probing the quality of the Dome C, Antarctica for the
discovery and characterization of exoplanets by photometry. In the first year
of operation of the 40 cm ASTEP 400 telescope (austral winter 2010), we
targeted the known transiting planet WASP-19b in order to try to detect its
secondary transits in the visible. This is made possible by the excellent
sub-millimagnitude precision of the binned data. The WASP-19 system was
observed during 24 nights in May 2010. The photometric variability level due to
starspots is about 1.8% (peak-to-peak), in line with the SuperWASP data from
2007 (1.4%) and larger than in 2008 (0.07%). We find a rotation period of
WASP-19 of 10.7 +/- 0.5 days, in agreement with the SuperWASP determination of
10.5 +/- 0.2 days. Theoretical models show that this can only be explained if
tidal dissipation in the star is weak, i.e. the tidal dissipation factor Q'star
> 3.10^7. Separately, we find evidence for a secondary eclipse of depth 390 +/-
190 ppm with a 2.0 sigma significance, a phase consistent with a circular orbit
and a 3% false positive probability. Given the wavelength range of the
observations (420 to 950 nm), the secondary transit depth translates into a day
side brightness temperature of 2690(-220/+150) K, in line with measurements in
the z' and K bands. The day side emission observed in the visible could be due
either to thermal emission of an extremely hot day side with very little
redistribution of heat to the night side, or to direct reflection of stellar
light with a maximum geometrical albedo Ag=0.27 +/- 0.13. We also report a
low-frequency oscillation well in phase at the planet orbital period, but with
a lower-limit amplitude that could not be attributed to the planet phase alone,
and possibly contaminated with residual lightcurve trends.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 13
figure
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route
International audienceZinc-gallium oxynitride powders (ZnGaON) were synthesized by nitridation of ZnGa2O4 oxide precursor obtained by polymeric precursors (PP) and solid state reaction (SSR) methods and the influence of the synthesis route of ZnGa2O4 on the final compound ZnGaON was investigated. Crystalline single phase ZnGa2O4 was obtained at 1100 oC / 12 h by SSR and at 600 oC / 2 h by PP with different grain sizes and specific surface areas according to the synthesis route. After nitridation, ZnGaON oxynitrides with a GaN wĂŒrtzite-type structure were obtained in both cases, however at lower temperatures for PP samples. The microstructure and the specific surface area were strongly dependent on the oxide synthesis method and on the nitridation temperature (42 m2g-1 and 5 m2g-1 for PP and SSR oxides treated at 700 °C, respectively). The composition analyses showed a strong loss of Zn for the PP samples, favored by the increase of ammonolysis temperature and by the higher specific surface area
Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys
International audienceIn this study, the microstructure and the mechanical properties of two new biocompatible superelastic alloys, Ti-24Nb-0.5O and Ti-24Nb-0.5N (at.%), were investigated. Special attention was focused on the role of O and N addition on αⳠformation, supereleastic recovery and mechanical strength by comparison with the Ti-24Nb and Ti-26Nb (at.%) alloy compositions taken as references. Microstructures were characterized by optical microscopy, X-ray diffraction and transmission electron microscopy before and after deformation. The mechanical properties and the superelastic behavior were evaluated by conventional and cyclic tensile tests. High tensile strength, low Young's modulus, rather high superelastic recovery and excellent ductility were observed for both superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N alloys. Deformation twinning was shown to accommodate the plastic deformation in these alloys and only the {332}ă113ă twinning system was observed to be activated by electron backscattered diffraction analyses
- âŠ