71 research outputs found

    The Past and Future of Analytic Philosophy in Spain : XX Years of Taller d?Investigació en Filosofia

    Get PDF
    Introduction to the Special Issue for the XX Years of TIF, ed. by M. Cabrera, J. Gimeno-Simó and S. Pérez-González Introdución al Número Monográfico que conmemora los XX años del TIF, editado por M. Cabrera, J. Gimeno-Simó y S. Pérez-González Introdució al Número Monogràfic que commemora els XX anys del TIF, editat per M. Cabrera, J. Gimeno-Simó i S. Pérez-Gonzále

    Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host

    Get PDF
    Classical swine fever virus (CSFV) remains a highly important pathogen, causing major losses in the swine industry. Persistent infection is highly relevant for CSFV maintenance in the field; however, this form of infection is not fully understood. An increase in the granulocyte population has been detected in CSFV persistently infected animals. The aim of this work was to evaluate the possible immunosuppressive role of these cells in CSFV persistent infection. The phenotype of peripheral blood and bone marrow cells from persistently infected and naïve animals was evaluated by flow cytometry, and the capacity of specific cell subsets to reduce the interferon gamma (IFN-γ) response against unspecific and specific antigen was determined using co-culture assays. The frequency of granulocytic cells was increased in cells from CSFV persistently infected pigs and they showed a phenotype similar to immunosuppressive cell populations found in persistent infection in humans. These cells from persistently infected animals were able to reduce the IFN-γ response against unspecific and specific antigen. Our results suggest that immature immunosuppressive cell populations play a role in CSFV persistent infection in swine. The information obtained by studying the role of myeloid derived suppressor cells (MDSC) during CSFV persistent infection may extrapolate to other viral persistent infections in mammals.info:eu-repo/semantics/publishedVersio

    Efficient detection of African Swine Fever Virus using minimal equipment through a LAMP PCR method

    Get PDF
    African swine fever virus (ASFV) currently represents the biggest threat to the porcine industry worldwide, with high economic impact and severe animal health and welfare concerns. Outbreaks have occurred in Europe and Asia since ASFV was reintroduced into the continent in 2007 and, in 2021, ASFV was detected in the Caribbean, raising alarm about the reemergence of the virus in the Americas. Given the lack of vaccines against ASFV, control of the virus relies on molecular surveillance, which can be delayed due to the need for sample shipment to specialized laboratories. Isothermal PCR techniques, such as LAMP, have become increasingly attractive as point-of-care diagnostic tools given the minimal material expense, equipment, and training required. The present study aimed to develop a LAMP assay for the detection of ASFV. Four LAMP primer sets were designed, based on a consensus sequence for the ASFV p72 gene, and were tested using a synthetic plasmid containing the cloned ASFV p72 target gene as a positive control. Two primer sets, were selected for further validation, given their very short time for amplification. Both primer sets showed thermal stability, amplifying the ASFV DNA at temperatures between 60-70°C and proved to have an analytical limit of detection as low as one ASFV-plasmid DNA copy/µL, using both fluorometric and colorimetric methods. The selected primers did not yield false positive or cross reactive results with other common swine pathogens, showing high specificity. Testing of DNA-spiked samples showed that LAMP amplification was not affected by the nature of the matrices, including oral fluids, tonsils, blood, or rectal swabs. The primer sets were able to detect the two more prevalent ASFV genotypes in the field. Taken together, the results show that ASFV-LAMP-BG2 and ASFV-LAMP-BG3 would be a useful tool for rapid, highly sensitive on-site diagnostic testing.info:eu-repo/semantics/publishedVersio

    Efficient detection of African Swine Fever Virus using minimal equipment through a LAMP PCR method

    Get PDF
    African swine fever virus (ASFV) currently represents the biggest threat to the porcine industry worldwide, with high economic impact and severe animal health and welfare concerns. Outbreaks have occurred in Europe and Asia since ASFV was reintroduced into the continent in 2007 and, in 2021, ASFV was detected in the Caribbean, raising alarm about the reemergence of the virus in the Americas. Given the lack of vaccines against ASFV, control of the virus relies on molecular surveillance, which can be delayed due to the need for sample shipment to specialized laboratories. Isothermal PCR techniques, such as LAMP, have become increasingly attractive as point-of-care diagnostic tools given the minimal material expense, equipment, and training required. The present study aimed to develop a LAMP assay for the detection of ASFV. Four LAMP primer sets were designed, based on a consensus sequence for the ASFV p72 gene, and were tested using a synthetic plasmid containing the cloned ASFV p72 target gene as a positive control. Two primer sets, were selected for further validation, given their very short time for amplification. Both primer sets showed thermal stability, amplifying the ASFV DNA at temperatures between 60-70°C and proved to have an analytical limit of detection as low as one ASFV-plasmid DNA copy/µL, using both fluorometric and colorimetric methods. The selected primers did not yield false positive or cross reactive results with other common swine pathogens, showing high specificity. Testing of DNA-spiked samples showed that LAMP amplification was not affected by the nature of the matrices, including oral fluids, tonsils, blood, or rectal swabs. The primer sets were able to detect the two more prevalent ASFV genotypes in the field. Taken together, the results show that ASFV-LAMP-BG2 and ASFV-LAMP-BG3 would be a useful tool for rapid, highly sensitive on-site diagnostic testing

    Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection

    Get PDF
    Classical swine fever virus (CSFV) induces trans-placental transmission and congenital viral persistence; however, the available information is not updated. Three groups of sows were infected at mid-gestation with either a high, moderate or low virulence CSFV strains. Foetuses from sows infected with high or low virulence strain were obtained before delivery and piglets from sows infected with the moderate virulence strain were studied for 32 days after birth. The low virulence strain generated lower CSFV RNA load and the lowest proportion of trans-placental transmission. Severe lesions and mummifications were observed in foetuses infected with the high virulence strain. Sows infected with the moderately virulence strain showed stillbirths and mummifications, one of them delivered live piglets, all CSFV persistently infected. Efficient trans-placental transmission was detected in sows infected with the high and moderate virulence strain. The trans-placental transmission occurred before the onset of antibody response, which started at 14 days after infection in these sows and was influenced by replication efficacy of the infecting strain. Fast and solid immunity after sow vaccination is required for prevention of congenital viral persistence. An increase in the CD8+ T-cell subset and IFN-alpha response was found in viremic foetuses, or in those that showed higher viral replication in tissue, showing the CSFV recognition capacity by the foetal immune system after trans-placental infection.info:eu-repo/semantics/publishedVersio

    Early and Solid Protection Afforded by the Thiverval Vaccine Provides Novel Vaccination Alternatives Against Classical Swine Fever Virus

    Get PDF
    Classical swine fever virus (CSFV) remains a challenge for the porcine industry. Inefficient vaccination programs in some endemic areas may have contributed to the emergence of low and moderate virulence CSFV variants. This work aimed to expand and update the information about the safety and efficacy of the CSFV Thiverval-strain vaccine. Two groups of pigs were vaccinated, and a contact and control groups were also included. Animals were challenged with a highly virulent CSFV strain at 21- or 5-days post vaccination (dpv). The vaccine induced rapid and strong IFN-α response, mainly in the 5-day immunized group, and no vaccine virus transmission was detected. Vaccinated pigs showed humoral response against CSFV E2 and Erns glycoproteins, with neutralising activity, starting at 14 days post vaccination (dpv). Strong clinical protection was afforded in all the vaccinated pigs as early as 5 dpv. The vaccine controlled viral replication after challenge, showing efficient virological protection in the 21-day immunized pigs despite being housed with animals excreting high CSFV titres. These results demonstrate the high efficacy of the Thiverval strain against CSFV replication. Its early protection capacity makes it a useful alternative for emergency vaccination and a consistent tool for CSFV control worldwide.info:eu-repo/semantics/publishedVersio

    Low CD4/CD8 ratio in classical swine fever postnatalpersistent infection generated at 3 weeks after birth

    Get PDF
    Classical swine fever virus (CSFV) is one of the most important pathogens affectingswine. After infection with a moderate virulence strain at 8 hours after birth, CSFV isable to induce viral persistence. These animals may appear clinically healthy or showedunspecific clinical signs despite the permanent viremia and high viral shedding, inabsence of immune response to the virus. Given the role played by this infection in dis-ease control, we aimed to evaluate the capacity of CSFV to induce postnatal persistentinfection at 3 weeks after birth. Nine pigs were CSFV infected and sampled weekly dur-ing 6 weeks and viral, clinical, pathological and immunological tests were carried out.Also, the CD4/CD8 ratio was calculated with the purpose to relate this marker with theCSFV persistent infection. The IFN‐αresponse was detected mainly 1 week after infec-tion, being similar in all the infected animals. However, 44.4% of animals were CSFVpersistently infected, 33.3% died and 22.2% developed specific antibody response.Interestingly, in persistently infected pigs, the T‐CD8 population was increased, the T‐CD4 subset was decreased and lower CD4/CD8 ratios were detected. This is the firstreport of CSFV capacity to confer postnatal persistent infection in pigs infected at3 weeks after birth, an age in which the weaning could be carried out in some swineproduction systems. This type of infected animals shed high amounts of virus and aredifficult to evaluate from the clinical and anatomopathological point of view. Therefore,the detection of this type of infection and its elimination in endemic areas will be rele-vant for global CSF eradication. Finally, the low CD4/CD8 ratios found in persistentlyinfected animals may be implicated in maintaining high CSFV replication during persis-tence and further studies will be performed to decipher the role of these cells in CSFVimmunopathogenesis.info:eu-repo/semantics/publishedVersio

    The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever

    Get PDF
    Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide.info:eu-repo/semantics/publishedVersio

    Classical Swine Fever Virus vs. Classical Swine Fever Virus : the Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar

    Get PDF
    Two groups with three wild boars each were used: Group A (animals 1 to 3) served as the control, and Group B (animals 4 to 6) was postnatally persistently infected with the Cat01 strain of CSFV (primary virus). The animals, six weeks old and clinically healthy, were inoculated with the virulent strain Margarita (secondary virus). For exclusive detection of the Margarita strain, a specific qRT-PCR assay was designed, which proved not to have cross-reactivity with the Cat01 strain. The wild boars persistently infected with CSFV were protected from superinfection by the virulent CSFV Margarita strain, as evidenced by the absence of clinical signs and the absence of Margarita RNA detection in serum, swabs and tissue samples. Additionally, in PBMCs, a well-known target for CSFV viral replication, only the primary infecting virus RNA (Cat01 strain) could be detected, even after the isolation in ST cells, demonstrating SIE at the tissue level in vivo. Furthermore, the data analysis of the Margarita qRT-PCR, by means of calculated ΔCt values, supported that PBMCs from persistently infected animals were substantially protected from superinfection after in vitro inoculation with the Margarita virus strain, while this virus was able to infect naive PBMCs efficiently. In parallel, IFN-α values were undetectable in the sera from animals in Group B after inoculation with the CSFV Margarita strain. Furthermore, these animals were unable to elicit adaptive humoral (no E2-specific or neutralising antibodies) or cellular immune responses (in terms of IFN-γ-producing cells) after inoculation with the second virus. Finally, a sequence analysis could not detect CSFV Margarita RNA in the samples tested from Group B. Our results suggested that the SIE phenomenon might be involved in the evolution and phylogeny of the virus, as well as in CSFV control by vaccination. To the best of our knowledge, this study was one of the first showing efficient suppression of superinfection in animals, especially in the absence of IFN-α, which might be associated with the lack of innate immune mechanisms

    Removal of the Erns RNase Activity and of the 3' Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease.

    Get PDF
    In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies
    corecore